作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,借助教案可以更好地組織教學活動。怎樣寫教案才更能起到其作用呢?
高二數學教案 1
教學目標:
1、理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
2、掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
教學重點:
體會直角坐標系的作用。
教學難點:
能夠建立適當的直角坐標系,解決數學問題。
授課類型:
新授課
教學模式:
啟發、誘導發現教學。
教 具:
多媒體、實物投影儀
教學過程:
一、復習引入:
情境1:為了確保宇宙飛船在預定的軌道上運行,并在按計劃完成科學考察任務后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構成的。要出現正確的背景圖案,需要缺點不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創建坐標系?
二、學生活動
學生回顧
刻畫一個幾何圖形的位置,需要設定一個參照系
1、數軸 它使直線上任一點P都可以由惟一的實數x確定
2、平面直角坐標系
在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數對(x,y)確定。
3、空間直角坐標系
在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數對(x,y,z)確定。
三、講解新課:
1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應滿足:
任意一點都有確定的坐標與其對應;反之,依據一個點的坐標就能確定這個點的位置
2、確定點的位置就是求出這個點在設定的坐標系中的坐標
四、數學運用
例1 選擇適當的平面直角坐標系,表示邊長為1的正六邊形的頂點。
變式訓練
如何通過它們到點O的距離以及它們相對于點O的方位來刻畫,即用”距離和方向”確定點的位置
例2 已知B村位于A村的正西方1公里處,原計劃經過B村沿著北偏東60的方向設一條地下管線m.但在A村的西北方向400米出,發現一古代文物遺址W.根據初步勘探的結果,文物管理部門將遺址W周圍100米范圍劃為禁區。試問:埋設地下管線m的計劃需要修改嗎?
變式訓練
1一炮彈在某處爆炸,在A處聽到爆炸的時間比在B處晚2s,已知A、B兩地相距800米,并且此時的聲速為340m/s,求曲線的方程
2在面積為1的中,,建立適當的坐標系,求以M,N為焦點并過點P的橢圓方程
例3 已知Q(a,b),分別按下列條件求出P 的坐標
(1)P是點Q 關于點M(m,n)的對稱點
(2)P是點Q 關于直線l:x-y+4=0的對稱點(Q不在直線1上)
變式訓練
用兩種以上的方法證明:三角形的三條高線交于一點。
思考
通過平面變換可以把曲線變為中心在原點的單位圓,請求出該復合變換?
五、小 結:本節課學習了以下內容:
1.平面直角坐標系的意義。
2、 利用平面直角坐標系解決相應的數學問題。
六、課后作業:
高二數學教案 2
一、學習者特征分析
本節課內容是面向高二下學期的學生,主要是進行思維的訓練。學生在高一的時候已經學過這些數學思維方法,但是對這些知識還沒有進行概念化的歸納和專門的訓練。學生不知道分析法和綜合法的時候還是會用一點,以以往的經驗,學生一旦學習概念后,反而覺得難度大,概念混淆,因此,這一教學內容的設計是針對學生的這一情況,設計專題學習網站,通過學生之間經過學習,交流,課后反復思考的,進一步深化概念的過程,培養學生的數學思維能力。
二、教學目標
知識與技能
1、 體會數學思維中的分析法和綜合法;
2、 會用分析法和綜合法去解決問題。
過程與方法
1、 通過對分析法綜合法的學習,培養學生的數學思維能力;
2、 培養學生的數學閱讀和理解能力;
3、 培養學生的評價和反思能力。
情感態度與價值觀
1. 交流、分享運用數學思維解決問題的喜悅;
2. 提高學生學習數學的興趣;
3. 增強學習數學的信心。
三、教學內容
本節課是數學思維訓練專題課,專門訓練學生利用分析法和綜合法解題。分析法在數學中特指從結果(結論)出發追溯其產生原因的思維方法,即執果索因法。綜合思維方法:綜合是以已知性質和分析為基礎的,從已知出發逐步推求位未知的思考方法,即執果導因法。這兩種數學思維方法是數學思維方法中最基礎也是最重要的方法,是學生的思維訓練的重要內容。
四、教學策略的設計
1、 情境的設計
情境描述
情境簡要描述
呈現方式
趣味問題
從前有個國王在處死那些犯了罪的臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內,每只盒子各寫一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個盒子里,就免你一死罪。”聰明的亞瑟經過推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?
網頁
2、 教學資源的設計
資源類型
資源內容簡要描述
資源來源
相關故事
通過有趣的推理故事,如“推理救命的故事”,“寶藏的故事,用于激發學生的學習興趣。
網上下載
學習網站
專題學習網站,嵌入了經過修改適用于本課的論壇,在線測試等。
自行制作
3、 教學工具:計算機
4、 教學策略:自主探究學習策略,任務驅動策略、反思策略
5、 教學環境:網絡教室
五、教學流程設計
1、創設情景,吸引學生注意
教師活動
學生活動
資源/工具
設計思想
提出“推理救命問題”
積極思考,尋找方法
學習網站
以具有趣味性的故事入手,吸引學生的注意,點明本節課的目的。
2、自主探究,獲取知識
教師活動
學生活動
資源/工具
設計思想
1、初試牛刀:讓學生試做思維訓練題。
3、舉一反三:讓學生學會總結
學以致用:
4、把本節的方法應用到解決數學問題中。
積極思考,互相交流,發現問題,解決問題。
學習網站
1、讓學生在輕松活潑的氛圍下帶著問題,自主、積極地學習,有助于培養學生的自我探索的能力。
2、超級鏈接控制性好,交互性強,可讓學生在較短的時間內收集積累更多的信息,拓寬學生的知識面。
3、培養學生收集信息、處理信息的能力。
3、總結概念,深化概念
教師活動
學生活動
資源/工具
設計思想
歸納本節的方法:分析法和綜合法。并指出:數學思維的訓練不單只是一節簡單的專題課,我們的同學在平常多留心身邊事物,多思考問題,不斷提高數學思維能力。
體會分析法和綜合法的概念,并在論壇上發表自己對概念的理解。
學習網站論壇
通過對具體問題的概念化,加深對概念的理解。
4、自主交流,知識遷移
教師活動
學生活動
資源/工具
設計思想
提出寶藏問題并指導學生利用BBs論壇進行討論
學生在論壇里充分地發表自己的看法
學習網站論壇
通過自主交流,增強分析問題的能力和解決問題的能力
5、在線測試,評價及反饋
教師活動
學生活動
資源/工具
設計思想
利用學習網站制作一些簡單的訓練題目
獨立完成在線的測試
學習網站
及時反饋課堂學習效果。
6、課后任務
教師活動
學生活動
資源/工具
設計思想
布置課后任務:在網絡上收集推理分析的相關例子,在學習網站的論壇上討論。
記錄要求,并在課后完成。
網絡資源和學習網站
通過課后的任務訓練,進一步提高學生的數學思維能力,把思維訓練延續到課堂外。
高二數學教案 3
一、教學目標
【知識與技能】
能正確概述“二面角”、“二面角的平面角”的概念,會做二面角的平面角。
【過程與方法】
利用類比的方法推理二面角的有關概念,提升知識遷移的能力。
【情感態度與價值觀】
營造和諧、輕松的學習氛圍,通過學生之間,師生之間的交流、合作和評價達成共識、共享、共進,實現教學相長和共同發展。
二、教學重、難點
【重點】
“二面角”和“二面角的平面角”的概念。
【難點】
“二面角的平面角”概念的形成過程。
三、教學過程
(一)創設情境,導入新課
請學生觀察生活中的一些模型,多媒體展示以下一系列動畫如:
1.打開書本的過程;
2.發射人造地球衛星,要根據需要使衛星的軌道平面與地球的赤道平面成一定的角度;
3.修筑水壩時,為了使水壩堅固耐久,須使水壩坡面與水平面成適當的角度;
引導學生說出書本的兩個面、水壩面與底面,衛星軌道面與地球赤道面均是呈一定的角度關系,引出課題。
(二)師生互動,探索新知
學生閱讀教材,同桌互相討論,教師引導學生對比平面角得出二面角的概念
平面角:平面角是從平面內一點出發的兩條射線(半直線)所組成的圖形。
二面角定義:從一條直線出發的兩個半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個半平面叫作二面角的面。(動畫演示)
(2)二面角的表示
(3)二面角的畫法
(PPT演示)
教師提問:一般地說,量角器只能測量“平面角”(指兩條相交直線所成的角。相應地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導學生將空間角化為平面角。
教師總結:
(1)二面角的平面角的定義
定義:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
“二面角的平面角”的定義三個主要特征:點在棱上、線在面內、與棱垂直(動畫演示)
大小:二面角的大小可以用它的平面角的大小來表示。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
①點P在棱上—定義法
②點P在一個半平面上—三垂線定理法
③點P在二面角內—垂面法
(三)生生互動,鞏固提高
(四)生生互動,鞏固提高
1.判斷下列命題的真假:
(1)兩個相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個面內,則這個角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2.作出一下面PAC和面ABC的平面角。
(五)課堂小結,布置作業
小結:通過本節課的學習,你學到了什么?
作業:以正方體為模型請找出一個所成角度為四十五度的二面角,并證明。
高二數學教案 4
一、教學目標
【知識與技能】
能正確概述“二面角”、“二面角的平面角”的概念,會做二面角的平面角。
【過程與方法】
利用類比的方法推理二面角的有關概念,提升知識遷移的能力。
【情感態度與價值觀】
營造和諧、輕松的學習氛圍,通過學生之間,師生之間的交流、合作和評價達成共識、共享、共進,實現教學相長和共同發展。
二、教學重、難點
【重點】
“二面角”和“二面角的平面角”的概念。
【難點】
“二面角的平面角”概念的形成過程。
三、教學過程
(一)創設情境,導入新課
請學生觀察生活中的一些模型,多媒體展示以下一系列動畫如:
1、打開書本的過程;
2、發射人造地球衛星,要根據需要使衛星的軌道平面與地球的赤道平面成一定的角度;
3、修筑水壩時,為了使水壩堅固耐久,須使水壩坡面與水平面成適當的角度;
引導學生說出書本的兩個面、水壩面與底面,衛星軌道面與地球赤道面均是呈一定的角度關系,引出課題。
(二)師生互動,探索新知
學生閱讀教材,同桌互相討論,教師引導學生對比平面角得出二面角的概念
平面角:平面角是從平面內一點出發的兩條射線(半直線)所組成的圖形。
二面角定義:從一條直線出發的兩個半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個半平面叫作二面角的面。(動畫演示)
(2)二面角的表示
(3)二面角的畫法
(PPT演示)
教師提問:一般地說,量角器只能測量“平面角”(指兩條相交直線所成的角。相應地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導學生將空間角化為平面角。
教師總結:
(1)二面角的平面角的定義
定義:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
“二面角的平面角”的定義三個主要特征:點在棱上、線在面內、與棱垂直(動畫演示)
大小:二面角的大小可以用它的平面角的大小來表示。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
①點P在棱上—定義法
②點P在一個半平面上—三垂線定理法
③點P在二面角內—垂面法
(三)生生互動,鞏固提高
(四)生生互動,鞏固提高
1、判斷下列命題的真假:
(1)兩個相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個面內,則這個角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2、作出一下面PAC和面ABC的平面角。
(五)課堂小結,布置作業
小結:通過本節課的學習,你學到了什么?
作業:以正方體為模型請找出一個所成角度為四十五度的二面角,并證明。
高二數學優秀教案 5
一、教學目標
【知識與技能】
掌握三角函數的單調性以及三角函數值的取值范圍。
【過程與方法】
經歷三角函數的單調性的探索過程,提升邏輯推理能力。
【情感態度價值觀】
在猜想計算的過程中,提高學習數學的興趣。
二、教學重難點
【教學重點】
三角函數的單調性以及三角函數值的取值范圍。
【教學難點】
探究三角函數的單調性以及三角函數值的取值范圍過程。
三、教學過程
引入新課
提出問題:如何研究三角函數的單調性
小結作業
提問:今天學習了什么?
引導學生回顧:基本不等式以及推導證明過程。
課后作業:
思考如何用三角函數單調性比較三角函數值的大小。
高二數學教案 6
簡單的邏輯聯結詞
(一)教學目標
1、知識與技能目標:
(1) 掌握邏輯聯結詞且的含義
(2) 正確應用邏輯聯結詞且解決問題
(3) 掌握真值表并會應用真值表解決問題
2、過程與方法目標:
在觀察和思考中,在解題和證明題中,本節課要特別注重學生思維的嚴密性品質的培養。
3、情感態度價值觀目標:
激發學生的學習熱情,激發學生的求知欲,培養嚴謹的學習態度,培養積極進取的精神。
(二)教學重點與難點
重點:通過數學實例,了解邏輯聯結詞且的含義,使學生能正確地表述相關數學內容。
難點:
1、正確理解命題Pq真假的規定和判定。
2、簡潔、準確地表述命題Pq.
教具準備:與教材內容相關的資料。
教學設想:在觀察和思考中,在解題和證明題中,本節課要特別注重學生思維的嚴密性品質的培養。
(三)教學過程
學生探究過程:
1、引入
在當今社會中,人們從事任何工作、學習,都離不開邏輯。具有一定邏輯知識是構成一個公民的文化素質的重要方面。數學的特點是邏輯性強,特別是進入高中以后,所學的數學比初中更強調邏輯性。如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤。其實,同學們在初中已經開始接觸一些簡易邏輯的知識。
在數學中,有時會使用一些聯結詞,如且或非。在生活用語中,我們也使用這些聯結詞,但表達的含義和用法與數學中的含義和用法不盡相同。下面介紹數學中使用聯結詞且或非聯結命題時的含義和用法。
為敘述簡便,今后常用小寫字母p,q,r,s,表示命題。(注意與上節學習命題的條件p與結論q的區別)
2、思考、分析
問題1:下列各組命題中,三個命題間有什么關系?
①12能被3整除;
②12能被4整除;
③12能被3整除且能被4整除。
學生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯結詞且聯結得到的新命題。
問題2:以前我們有沒有學習過象這樣用聯結詞且聯結的命題呢?你能否舉一些例子?
例如:命題p:菱形的對角線相等且菱形的對角線互相平分。
3、歸納定義
一般地,用聯結詞且把命題p和命題q聯結起來,就得到一個新命題,記作pq,讀作p且q。
命題pq即命題p且q中的且字與下面命題中的且 字的含義相同嗎?
若 xA且xB,則xB。
定義中的且字與命題中的且 字的含義是類似。但這里的邏輯聯結詞且與日常語言中的和,并且,以及,既又等相當,表明前后兩者同時兼有,同時滿足。說明:符號與開口都是向下。
注意:p且q命題中的p、q是兩個命題,而原命題,逆命題,否命題,逆否命題中的p,q是一個命題的條件和結論兩個部分。
4、命題pq的真假的規定
你能確定命題pq的真假嗎?命題pq和命題p,q的真假之間有什么聯系?
引導學生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個命題的真假之間的關系的一般規律。
例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。
一般地,我們規定:
當p,q都是真命題時,pq是真命題;當p,q兩個命題中有一個命題是假命題時,pq是假命題。
5、例題
例1:將下列命題用且聯結成新命題pq的形式,并判斷它們的真假。
(1)p:平行四邊形的對角線互相平分,q:平行四邊形的對角線相等。
(2)p:菱形的對角線互相垂直,q:菱形的對角線互相平分;
(3)p:35是15的倍數,q:35是7的倍數。
解:(1)pq:平行四邊形的對角線互相平分且平行四邊形的對角線相等。也可簡寫成平行四邊形的對角線互相平分且相等。
由于p是真命題,且q也是真命題,所以pq是真命題。
(2)pq:菱形的對角線互相垂直且菱形的對角線互相平分。 也可簡寫成菱形的對角線互相垂直且平分。
由于p是真命題,且q也是真命題,所以pq是真命題。
(3)pq:35是15的倍數且35是7的倍數。 也可簡寫成35是15的倍數且是7的倍數。
由于p是假命題, q是真命題,所以pq是假命題。
說明,在用且聯結新命題時,如果簡寫,應注意保持命題的意思不變。
例2:用邏輯聯結詞且改寫下列命題,并判斷它們的真假。
(1)1既是奇數,又是素數;
(2)2是素數且3是素數;
6.鞏固練習 :P20 練習第1 , 2題
7.教學反思:
(1)掌握邏輯聯結詞且的含義
(2)正確應用邏輯聯結詞且解決問題
高二數學優秀教案 7
教學要求:理解曲線交點與方程組的解的關系,掌握直線與曲線位置關系的討論,能熟練地求曲線交點。
教學重點:熟練地求交點。
教學過程:
一、復習準備:
1、直線A x+B +C =0與直線A x+B +C =0,
平行的充要條件是 ,相交的充要條件是 ;
重合的充要條件是 ,垂直的充要條件是 。
2、知識回顧:充分條件、必要條件、充要條件。
二、講授新課:
1、教學例題:
①出示例:求直線=x+1截曲線= x 所得線段的中點坐標。
②由學生分析求解的思路→學生練→老師評講
(聯立方程組→消用韋達定理求x坐標→用直線方程求坐標)
③試求→訂正→小結思路。→變題:求弦長
④出示例:當b為何值時,直線=x+b與曲線x + =4 分別 相交?相切? 相離?
⑤分析:三種位置關系與兩曲線的交點情況有何關系?
⑥學生試求→訂正→小結思路。
⑦討論其它解法?
解二:用圓心到直線的距離求解;
解三:用數形結合法進行分析。
⑧討論:兩條曲線F (x,)=0與F (x,)=0相交的充要條件是什么?
如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關系?
( 聯立方程組后,一解時:相切或相交; 二解時:相交; 無解時:相離)
2、練習:
求過點(-2,- )且與拋物線= x 相切的直線方程。
三、鞏固練習:
1、若兩直線x+=3a,x-=a的交點在圓x + =5上,求a的值。
(答案:a=±1)
2、求直線=2x+3被曲線=x 截得的線段長。
3、課堂作業:書P72 3、4、10題。
高二數學教案 8
教學目標
1.使學生理解圓的旋轉不變性,理解圓心角、弦心距的概念;
2.使學生掌握圓心角、弧、弦、弦心距之間的相等關系定理及推論,并初步學會運用這些關系解決有關問題;
3.培養學生觀察、分析、歸納的能力,向學生滲透旋轉變換的思想及由特殊到一般的認識規律.
教學重點和難點
圓心角、弧、弦、弦心距之間的相等關系是重點;從圓的旋轉不變性出發,推出圓心角、弧、弦、弦心距之間的相等關系是難點.
教學過程設計
一、創設情景,引入新課
圓是軸對稱圖形.圓的這一性質,幫助我們解決了圓的許多問題.今天我們再來一起研究一下圓還有哪些特性.
1.動態演示,發現規律
投影出示圖7-47,并動態顯示:平行四邊形繞對角線交點O旋轉180°后.問:
(1)結果怎樣?
學生答:和原來的平行四邊形重合.
(2)這樣的圖形叫做什么圖形?
學生答:中心對稱圖形.
投影出示圖7-48,并動態顯示:⊙O繞圓心O旋轉180°.由學生觀察后,歸納出:圓是以圓心為對稱中心的中心對稱圖形.
投影繼續演示如圖7-49,讓直徑AB兩個端點A,B繞圓心旋轉30°,45°,
90°,讓學生觀察發現什么結論?
得出:不論繞圓心旋轉多少度,都能夠和原來的圖形重合.
進一步演示,讓圓繞著圓心旋轉任意角度α,你發現什么?
學生答:仍然與原來的圖形重合.
于是由學生歸納總結,得出圓所特有的性質:圓的旋轉不變性.即圓繞圓心旋轉任意一個角度α,都能夠與原來的圖形重合.
2.圓心角,弦心距的概念.
我們在研究圓的旋轉不變性時,⊙O繞圓心O旋轉任意角度α后,出現一個角
∠AOB,請同學們觀察一下,這個角有什么特點?如圖7-50.(如有條件可電腦閃動顯示圖形.)
在學生觀察的基礎上,由學生說出這個角的特點:頂點在圓心上.
在此基礎上,教師給出圓心角的定義,并板書.
頂點在圓心的角叫做圓心角.
再進一步觀察,AB是∠AOB所對的弧,連結AB,弦AB既是圓心角∠AOB也是AB所對的弦.請同學們回憶,在學習垂徑定理時,常作的一條輔助線是什么?
學生答:過圓心O作弦AB的垂線.
在學生回答的基礎上,教師指出:點O到AB的垂直線段OM的長度,即圓心到弦的'距離叫做弦心距.如圖7-51.(教師板書定義)最后指出:這節課我們就來研究圓心角之間,以及它們所對的弧、弦、弦的弦心距之間的關系.(引出課題)
二、大膽猜想,發現定理
在圖7-52中,再畫一圓心角∠A′OB′,如果∠AOB=∠A′OB′,(變化顯示兩角相等)再作出它們所對的弦AB,A′B′和弦的弦心距OM,OM′,請大家大膽猜想,其余三組量與,弦AB與A′B′,弦心距OM與OM′的大小關系如何?
學生很容易猜出:=,AB=A′B′,OM=OM′.
教師進一步提問:同學們剛才的發現僅僅是感性認識,猜想是否正確,必須進行證明,怎樣證明呢?
學生最容易想到的是證全等的方法,但得不到=,怎樣證明弧相等呢?
讓學生思考并啟發學生回憶等弧的定義是什么?
學生:在同圓或等圓中,能夠完全重合的弧叫等弧.
請同學們想一想,你用什么方法讓和重合呢?
學生:旋轉.
下面我們就來嘗試利用旋轉變換的思想證明=.
把∠AOB連同旋轉,使OA與OA′重合,電腦開始顯示旋轉過程.教師邊演示邊提問.
我們發現射線OB與射線OB′也會重合,為什么?
學生:因為∠AOB=∠A′OB′,
所以射線OB與射線OB′重合.
要證明與重合,關鍵在于點A與點A′,點B與點B′是否分別重合.這兩對點分別重合嗎?
學生:重合.
你能說明理由嗎?
學生:因為OA=OA′,OB=OB′,
所以點A與點A′重合,點B與點B′重合.
當兩段孤的兩個端點重合后,我們可以得到哪些量重合呢?
學生:與重合,弦AB與A′B′重合,OM與OM′重合.
為什么OM也與OM′重合呢?
學生:根據垂線的唯一性.
于是有結論:=,AB=A′B′,OM=OM′.
以上證明運用了圓的旋轉不變性.得到結論后,教師板書證明過程,并引導學生用簡潔的文字敘述這個真命題.
教師板書定理.
定理:在同圓____中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
教師引導學生補全定理內容.
投影顯示如圖7-53,⊙O與⊙O′為等圓,∠AOB=∠A′O′B′,OM與
O′M′分別為AB與A′B′的弦心距,請學生回答與.AB與A′B′,OM與O′M′還相等嗎?為什么?
在學生回答的基礎上,教師指出:以上三組量仍然相等,因為兩個等圓可以疊合成同圓.(投影顯示疊合過程)
這樣通過疊合,把等圓轉化成了同圓,教師把定理補充完整.
然后,請同學們思考定理的條件和結論分別是什么?并回答:
定理是在同圓或等圓這個大前提下,已知圓心角相等,得出其余三組量相等.請同學們思考,在這個大前提下,把圓心角相等與三個結論中的任何一個交換位置,可以得到三個新命題,這三個命題是真命題嗎?如何證明?
在學生討論的基礎上,簡單地說明證明方法.
最后,教師把這四個真命題概括起來,得到定理的推論.
請學生歸納,教師板書.
推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等.
三、鞏固應用、變式練習
例1判斷題,下列說法正確嗎?為什么?
(1)如圖7-54:因為∠AOB=∠A′OB′,所以AB=.
(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么=.
分析:(1)、(2)都是不對的.在圖7-54中,因為和不在同圓或等圓中,不能用定理.對于(2)也缺少了等圓的條件.可讓學生舉反例說明.
例2如圖7-55,點P在⊙O上,點O在∠EPF的角平分線上,∠EPF的兩邊交⊙O于點A和B.求證:PA=PB.
讓學生先思考,再敘述思路,教師板書示范.
證明:作OM⊥PA,ON⊥PB,垂足為M,N.
把P點當做運動的點,將例2演變如下:
變式1(投影打出)
已知:如圖7-56,點O在∠EPF的平分線上,⊙O和∠EPF的兩邊分別交于點A,B和C,D.
求證:AB=CD.
師生共同分析之后,由學生口述證明過程.
變式2(投影打出)
已知:如圖7-57,⊙O的弦AB,CD相交于點P,∠APO=∠CPO,
求證:AB=CD.
由學生口述證題思路.
說明:這組例題均是利用弦心距相等來證明弦相等的問題,當然,也可利用其它方法來證,只不過前者較為簡便.
練習1已知:如圖7-58,AD=BC.
求證:AB=CD.
師生共同分析后,學生練習,一學生上黑板板演.
變式練習.已知:如圖7-58,=,求證:AB=CD.
四、師生共同小結
教師提問:
(1)這節課學習了哪些具體內容?
(2)本節的定理和推論是用什么方法證明的?
(3)應注意哪些問題?
在學生回答的基礎上,教師總結.
(1)這節課主要學習了兩部分內容:一是證明了圓是中心對稱圖形.得到圓的特性圓的旋轉不變性;二是學習了在同圓或等圓中,圓心角、圓心角所對的弧、所對的弦、所對的弦的弦心距之間的關系定理及推論.這些內容是我們今后證明弧相等、弦相等、角相等的重要依據.
(2)本節通過觀察猜想論證的方法,從運動變化中發現規律,得出定理及推論,同時遵循由特殊到一般的思維認識規律,滲透了旋轉變換的思想.
(3)在運用定理及推論解題時,必須注意要有“在同圓或等圓”這一前提條件.
五、布置作業
思考題:已知AB和CD是⊙O的兩條弦,OM和ON分別是AB和CD的弦心距,如果AB>CD,那么OM和ON有什么關系?為什么?
板書設計
課堂教學設計說明
這份教案為1課時.
如果內容多,部分練習題可在下節課中處理.
摘自《初中幾何教案》
高二數學公開課優秀教案 9
一、教學內容分析:
本節內容在教材中有著重要的地位與作用,線性規劃是利用數學為工具來研究一定的人、財、物、時、空等資源在一定的條件下,如何精打細算巧安排,用最少的資源,取得的經濟效益,這一部分內容體現了數學的工具性、應用性,同時滲透了化歸,數形結合的數學思維和解決實際問題的一種重要的解題方法——數學建模法。
二、學生學習情況分析:
把實際問題轉化為線性規劃問題,并結合出解答是本節的重點和難點,對許多學生來說,解數學應用題的最常見的困難是不會持實際問題轉化或數學問題,即不會建模,對學生而言,解決應用問題的障礙主要有三類:①不能正確理解題意思,弄清各元素之間的關系;②不能弄清問題的主次關系,因而抓不住問題的'本質,無法建立數學模型;③孤立考慮單個問題情境,不能多聯想。
三、設計思想:
注意學生的探究過程,讓學生體驗探究問題的成就感,一切以學生的探究活動為主,以問題是驅動,激發學生學習樂趣。
四、教學目標:
1、使學生了解線性規劃的意義以及約束條件、目標函數、可行域、可行解、解等基本概念;了解線性規劃問題的圖解法,并能應用它解決一些簡單的實際問題。
2、通過本節內容的學習,培養學生觀察、聯想以及作圖的能力等。滲透集合,化歸,數形結合的數學思想,提問“建模”和解決實際問題的能力。
五、教學重點和難點:
教學重點:求線性目標函數的最值問題,培養學生“用數學”的意識,即線性規劃在實際生活中的應用。
教學難點:把實際問題轉化為線性規劃問題,并結合出解答。
六、教學過程:
(一)問題引入
某工廠用A、B兩種配件生產甲、乙兩種產品,每生產一會一件甲產品使用4個A配件耗時1個小時,每生產一件乙產品使用4個B配件耗時2小時,該廠每天最多可以配件廠獲得16個A配件和12個B配件,按每天工作8小時計算,該廠所有可能的月生產安排是什么?由學生列出不等關系,并畫出平面區域,由此引入新課。
(二)問題深入,推進新課
①引領學生自主探索引入問題中的實際問題,怎樣安排才有意義?
②若生產一件甲產品獲利2萬元,生產一件乙產品獲利3萬元,采用哪種生產安排利潤?
設計意圖:
由實際問題出發激發學生學習興趣,在探究過程中,看似簡單的問題,學生容易抓不住問題的主干,需要適時的引導。
(三)揭示本質 深化認識
提出問題:
① 上述探索的問題中,Z的幾何意義是什么?結合圖形說明
②結合以上探究,理解什么是目標函數?線性目標函數?什么是線性規劃?弄清什么是可行域解?可行域?解?
③你能根據以上探究總結出解決線性規劃問題的一般步驟嗎?
(四)應用示例
高二數學教案優秀教案 10
一、教學過程
1.復習。
反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。
求出函數y=x3的反函數。
2.新課。
先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象(圖1):
教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。
生2:這是y=x3的反函數y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
師:我們請生1再給大家演示一下,大家幫他找找原因。
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的。關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?
(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y=的圖象?
生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。
師:將橫坐標與縱坐標互換?怎么換?
師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?
生6:我發現這兩個圖象應是關于某條直線對稱。
師:能說說是關于哪條直線對稱嗎?
生6:我還沒找出來。
學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。
師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。
(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)
教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,也不是函數的圖象。
最后教師與學生一起總結:
點(x,y)與點(y,x)關于直線y=x對稱;
函數及其反函數的圖象關于直線y=x對稱。
二、反思與點評
1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。
2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。
計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。
在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。
當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。
3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。
高二數學優秀教案 11
教學目標
1、知識與技能
(1)理解并掌握正弦函數的定義域、值域、周期性、(小)值、單調性、奇偶性;
(2)能熟練運用正弦函數的性質解題。
2、過程與方法
通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。
3、情感態度與價值觀
通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。
教學重難點
重點:正弦函數的性質。
難點:正弦函數的性質應用。
教學工具
投影儀
教學過程
【創設情境,揭示課題】
同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?
【探究新知】
讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:
(1)正弦函數的定義域是什么?
(2)正弦函數的值域是什么?
(3)它的最值情況如何?
(4)它的正負值區間如何分?
(5)?(x)=0的解集是多少?
師生一起歸納得出:
1、定義域:y=sinx的定義域為R
2、值域:引導回憶單位圓中的正弦函數線,結論:|sinx|≤1(有界性)
再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[-1,1]
課后小結
歸納整理,整體認識
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及的主要數學思想方法有哪些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
課后習題
作業:習題1—4第3、4、5、6、7題。
高二數學教案 12
平面向量共線的坐標表示
前提條件a=(x1,y1),b=(x2,y2),其中b≠0
結論當且僅當x1y2-x2y1=0時,向量a、b(b≠0)共線
[點睛](1)平面向量共線的坐標表示還可以寫成x1x2=y1y2(x2≠0,y2≠0),即兩個不平行于坐標軸的共線向量的對應坐標成比例;
(2)當a≠0,b=0時,a∥b,此時x1y2-x2y1=0也成立,即對任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()
(2)向量(2,3)與向量(-4,-6)反向。()
答案:(1)√(2)√
2、若向量a=(1,2),b=(2,3),則與a+b共線的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3、已知a=(1,2),b=(x,4),若a∥b,則x等于()
A.-12B.12C.-2D.2
答案:D
4、已知向量a=(-2,3),b∥a,向量b的起點為A(1,2),終點B在x軸上,則點B的坐標為________.
答案:73,0
向量共線的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3)。判斷與是否共線?如果共線,它們的方向相同還是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假設a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設不成立,故應有a,b共線,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共線。
又=-2,∴,方向相反。
綜上,與共線且方向相反。
向量共線的判定方法
(1)利用向量共線定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共線的坐標表達式x1y2-x2y1=0直接求解。
[活學活用]
已知a=(1,2),b=(-3,2),當k為何值時,ka+b與a-3b平行,平行時它們的方向相同還是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,
解得k=-13,此時ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向。
∴k=-13時,ka+b與a-3b平行且方向相反。
三點共線問題
[典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點共線;
(2)設向量=(k,12),=(4,5),=(10,k),當k為何值時,A,B,C三點
共線?
[解](1)證明:∵=-=(4,8),
=-=(6,12),
∴=32,即與共線。
又∵與有公共點A,∴A,B,C三點共線。
(2)若A,B,C三點共線,則,共線,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有關三點共線問題的解題策略
(1)要判斷A,B,C三點是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點共線;
(2)使用A,B,C三點共線這一條件建立方程求參數時,利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數的表達式。
數學高二教案 13
一、教學內容
這學期按照教育局教研室的要求,教學任務比較重。選修1-1,第三章《導數》,根據教研室的計劃,應該安排在春節前。鑒于期末考試臨近,這一章沒有學習,所以這學期的教學內容有以下幾個部分:選修1-1《導數》,選修1-2,共四章《統計案例》,《推理與證明》,《數系的擴充與復數的引入》。
二、教學策略
根據年山東省高考數學(文科)大綱的要求,應及時調整教學計劃,切實重視學生學習的實施,讓學生的學 精心備課,精心指導,針對目標學生不放松,努力使目標學生數學成績有效,積極交流,提高教學水平,同時認真學習《框圖》,學習新課程,應用新課程。
三、具體措施
這學期我主要從以下幾個方面做好教學工作:
1、注重學習計劃指導學習,善用好學案例。注重研究老師如何說話,就是注重研究學生如何學習。
2、盡量分層次做作業,尤其是加餐,提高尖子生的學習成績。
3、特別注意學生作業的落實,不定時查看學生的集錦和作業本。
4、組織單位通過,做好試卷講評工作。
5、積極溝通目標學生的想法和感受。
關于高二數學教案 14
【教學目標】
1、會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
2、能根據幾何結構特征對空間物體進行分類。
3、提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。
【教學重難點】
教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
教學難點:柱、錐、臺、球的結構特征的概括。
【教學過程】
1、情景導入
教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。
2、展示目標、檢查預習
3、合作探究、交流展示
(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學生分組討論,每小組選出一名同學發表本組討論結果。
在此基礎上得出棱柱的主要結構特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。
(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
(7)教師指出圓柱和棱柱?
4、質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可
(2)運算律:設λ,μ為任意實數,則有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特別地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[點睛](1)實數與向量可以進行數乘運算,但不能進行加減運算,如λ+a,λ—a均無法運算。
(2)λa的結果為向量,所以當λ=0時,得到的結果為0而不是0。
2、向量共線的條件
向量a(a≠0)與b共線,當且僅當有一個實數λ,使b=λa。
[點睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時,雖有a與b共線,但不存在實數λ使b=λa成立;若a=b=0,a與b顯然共線,但實數λ不,任一實數λ都能使b=λa成立。
(2)a是非零向量,b可以是0,這時0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實數。
3、向量的線性運算
向量的加、減、數乘運算? 對于任意向量a,b及任意實數λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)
(1)λa的方向與a的方向一致。()
(2)共線向量定理中,條件a≠0可以去掉。()
(3)對于任意實數m和向量a,b,若ma=mb,則a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a與b方向相同,則下列關系式正確的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四邊形ABCD中,若=—12,則此四邊形是()
A、平行四邊形B、菱形
C、梯形D、矩形
答案:C
4、化簡:2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的線性運算
[例1]化簡下列各式:
(1)3(6a+b)—9a+13b;
(2)12?3a+2b?—a+12b—212a+38b;
(3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
(2)原式=122a+32b—a—34b=a+34b—a—34b=0。
(3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量線性運算的方法
向量的線性運算類似于代數多項式的運算,共線向量可以合并,即“合并同類項”“提取公因式”,這里的“同類項”“公因式”指的是向量。
高二數學教案 15
教學內容
教材第2頁的例2,第3頁的小數乘法法則和“做一做”,練習一的第5、9題。
素質教育目標
(一)知識教學點
1.使學生理解一個數乘以小數的意義。
2.掌握小數乘法的計算法則。
(二)能力訓練點
1.能說出小數乘法算式所表示的意義。
2.能比較正確地計算小數乘法,提高計算能力。
3.培養學生的遷移類推能力和概括能力以及運用所學知識解決新問題的能力。
(三)德育滲透點
繼續滲透轉化思想。
教學重點:
理解一個數乘以小數的意義,會應用小數乘法的計算法則正確地進行計算。
教學難點:
理解一個數乘以小數的意義和小數乘法中積的小數點的定位。
教具學具準備:
口算卡片、投影片。
教學步驟
一、鋪墊孕伏
1.口算:
0.3×6 0.8×4 7.2×0 4.2×8
0.25×4 3.6×3 4.3×5 0.6×9
2.說出下列小數表示的意義:
0.2 0.5 0.45 0.824
使學生明確一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
3.復習例1,花布每米6.5元,買5米要用多少元?
(1)指名列式計算,然后說一說小數乘以整數的意義和小數乘以整數的計算方法。
(2)引導學生知道:每米6.5元是單價,5米是數量,求的是總價。根據單價×數量=總價也可以列出乘法算式。
二、探究新知
1.理解一個數乘以小數的意義。
(1)教學例2
①出示例2花布每米6.5元,買0.5米用多少元?
②讀題,理解題意,從題中你知道了什么?
引導學生知道:每米6.5元是單價,0.5米是買的數量,求的是總價。根據單價×數量=總價可以列式為6.5×0.5。
教師板書:
6.5×0.5
③用線段圖表示題中的數量關系:
④啟發學生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。
教師板書:
求6.5的十分之五
引導學生類推:
6.5×0.4就是求6.5的十分之四是多少,
6.5×0.7就是求6.5的十分之七是多少,
一個數乘以零點幾就是求這個數的十分之幾是多少。
互相討論得出結論:一個數乘以一位小數的意義是求這個數的十分之幾。
(2)補充例2,買0.82米用多少元?
①引導學生用線段圖表示:
②啟發學生理解:每米6.5元是布的單價,0.82米是買布的數量,求的是總價,列式為6.5×0.82。
教師板書:
6.5×0.82
0.82米是1米的百分之八十二,6.5×0.82就是求6.5的百分之八十二。
教師板書:
求6.5的百分之八十二
仿照6.5×0.5的教學方法,引導學生類推得出:
一個數乘以兩位小數的意義就是求這個數的百分之幾。
③師生共同小結:一個數乘以一位小數的意義是求這個數的十分之幾,乘以兩位小數的意義是求這個數的百分之幾。
④引導學生類推:一個數乘以三位小數就是求這個數的千分之幾,一個數乘以四位小數就是求這個數的萬分之幾,……
最后概括板書:一個數乘以小數的意義是求這個數的十分之幾,百分之幾,千分之幾……
2.探究一個數乘以小數的計算方法。
(1)提出問題,學生討論:
計算小數乘以整數,是把小數轉化成整數計算的,6.5×0.5和6.5×0.82這兩個算式中,被乘數和乘數都含有小數位,應該怎樣計算?
(2)通過討論匯報,使學生明白:把6.5×0.5變成整數乘法,6.5變成65擴大了10倍,0.5變成5也擴大了10倍,這樣乘出來的積就擴大了10×10=100倍,要求原來的'積,應把乘出來的積再縮小100倍。同時教師板書:
把6.5×0.82變成整數乘法,6.5變成65擴大10倍,0.82變成82擴大100倍,這樣乘出來的積就擴大了10×100=1000倍。要求原來的積,應把乘出來的積再縮小1000倍。教師板書:
說明書寫的格式,并提示學生:要先點小數點,再把小數末尾的“0”劃掉。
3.總結小數乘法的計算法則。
(1)引導學生觀察算式得出:兩個因數中一共有兩位小數,積中就有兩位小數;兩個因數中一共有三位小數,積中就有三位小數。
(2)想一想:6.05×0.82的積中有幾位小數?6.052×0.82的積中有幾位小數?
(3)引導學生概括:兩個因數中一共有幾位小數,積中就幾位小數。
(4)在小數乘以整數的計算方法的基礎上,師生共同歸納總結出小數乘法的計算法則。
(5)完成法則下面的“做一做”。
出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判斷積里應該有幾位小數,再讓學生獨立計算,然后集體訂正。訂正時學生說一說是怎樣計算的。
三、鞏固發展
1.練習一5題
(1)題,先引導學生理解“十分之三”和“一半”分別用什么數表示,然后學生獨立列式。
(2)題,學生獨立列式,訂正時,說一說根據什么列式的。
2.說出下列算式表示的意義:
2.54×0.8 13×0.36 16.2×15 24×0.035
3.練習一6題
4.在下面各式的積中點上小數點。
5.練習一8題。學生獨立填書,訂正時指名說一說是怎樣想的。
四、全課小結:引導學生回憶這節課學習了什么知識?
五、布置作業:練習一7題、9題。
高二數學教案 16
一、課前準備:
【自主梳理】
1、對數:
(1) 一般地,如果 ,那么實數 叫做________________,記為________,其中 叫做對數的_______, 叫做________.
(2)以10為底的對數記為________,以 為底的對數記為_______.
(3) , 。
2、對數的運算性質:
(1)如果 ,那么 ,
。
(2)對數的換底公式: 。
3、對數函數:
一般地,我們把函數____________叫做對數函數,其中 是自變量,函數的定義域是______.
4、對數函數的圖像與性質:
a1 0
圖象性
質 定義域:___________
值域:_____________
過點(1,0),即當x=1時,y=0
x(0,1)時_________
x(1,+)時________ x(0,1)時_________
x(1,+)時________
在___________上是增函數 在__________上是減函數
【自我檢測】
1、 的定義域為_________.
2、化簡: 。
3、不等式 的解集為________________.
4、利用對數的換底公式計算: 。
5、函數 的奇偶性是____________.
6、對于任意的 ,若函數 ,則 與 的大小關系是___________________________.
二、課堂活動:
【例1】填空題:
(1) 。
(2)比較 與 的大小為___________.
(3)如果函數 ,那么 的最大值是_____________.
(4)函數 的奇偶性是___________.
【例2】求函數 的定義域和值域。
【例3】已知函數 滿足 。
(1)求 的解析式;
(2)判斷 的奇偶性;
(3)解不等式 。
課堂小結
三、課后作業
1、 。略
2、函數 的定義域為_______________.
3、函數 的值域是_____________.
4、若 ,則 的取值范圍是_____________.
5、設 則 的大小關系是_____________.
6、設函數 ,若 ,則 的取值范圍為_________________.
7、當 時,不等式 恒成立,則 的取值范圍為______________.
8、函數 在區間 上的值域為 ,則 的最小值為____________.
9、已知 。
(1)求 的定義域;
(2)判斷 的奇偶性并予以證明;
(3)求使 的 的取值范圍。
10、對于函數 ,回答下列問題:
(1)若 的定義域為 ,求實數 的取值范圍;
(2)若 的值域為 ,求實數 的取值范圍;
(3)若函數 在 內有意義,求實數 的取值范圍。
四、糾錯分析
錯題卡 題 號 錯 題 原 因 分 析
高二數學教案:對數與對數函數
一、課前準備:
【自主梳理】
1、對數
(1)以 為底的 的對數, ,底數,真數。
(2) , 。
(3)0,1.
2、對數的運算性質
(1) , , 。
(2) 。
3、對數函數
, 。
4、對數函數的圖像與性質
a1 0
圖象性質 定義域:(0,+)
值域:R
過點(1,0),即當x=1時,y=0
x(0,1)時y0
x(1,+)時y0 x(0,1)時y0
x(1,+)時y0
在(0,+)上是增函數 在(0,+)上是減函數
【自我檢測】
1、 2. 3.
4、 5.奇函數 6. 。
二、課堂活動:
【例1】填空題:
(1)3.
(2) 。
(3)0.
(4)奇函數。
【例2】解:由 得 。所以函數 的定義域是(0,1)。
因為 ,所以,當 時, ,函數 的值域為 ;當 時, ,函數 的值域為 。
【例3】解:(1) ,所以 。
(2)定義域(-3,3)關于原點對稱,所以
,所以 為奇函數。
(3) ,所以當 時, 解得
當 時, 解得 。
高二數學教案 17
學習目標
1.回顧在平面直角坐標系中刻畫點的位置的方法。
2.能夠建立適當的直角坐標系,解決數學問題。
學習過程
一、學前準備
1、通過直角坐標系,平面上的與(),曲線與建立了聯系,實現了。
2、閱讀P3思考得出在直角坐標系中解決實際問題的過程是:
二、新課導學
◆探究新知(預習教材P1~P4,找出疑惑之處)
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創建坐標系?
問題3:(1).如何把平面內的點與有序實數對(x,y)建立聯系?(2).平面直角坐標系中點和有序實數對(x,y)是怎樣的關系?
問題4:如何研究曲線與方程間的關系?結合課本例子說明曲線與方程的關系?
問題5:如何刻畫一個幾何圖形的位置?
需要設定一個參照系
(1)、數軸它使直線上任一點P都可以由惟一的實數x確定
(2)、平面直角坐標系:在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數對(x,y)確定
(3)、空間直角坐標系:在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數對(x,y,z)確定
(4)、抽象概括:在平面直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數解建立了如下的關系:A.曲線C上的點坐標都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標的點都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問題6:如何建系?
根據幾何特點選擇適當的直角坐標系。
(1)如果圖形有對稱中心,可以選對稱中心為坐標原點;
(2)如果圖形有對稱軸,可以選擇對稱軸為坐標軸;
(3)使圖形上的特殊點盡可能多的在坐標軸上。
高二數學優秀教案 18
教學準備
xxx
教學目標
1、掌握平面向量的數量積及其幾何意義;
2、掌握平面向量數量積的重要性質及運算律;
3、了解用平面向量的數量積可以處理垂直的問題;
4、掌握向量垂直的條件。
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1、平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)。
并規定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定。
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分。符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替。
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
高二數學教案 19
教學準備
教學目標
熟練掌握三角函數式的求值
教學重難點
熟練掌握三角函數式的求值
教學過程
【知識點精講】
三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形
三角函數式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解
(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數值的影響,對角的范圍要討論
【例題選講】
課堂小結】
三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形
三角函數式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解
(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數值的影響,對角的范圍要討論
高二數學教案 20
一、教材分析
【教材地位及作用】
基本不等式又稱為均值不等式,選自北京師范大學出版社普通高中課程標準實驗教科書數學必修5第3章第3節內容。教學對象為高二學生,本節課為第一課時,重在研究基本不等式的證明及幾何意義。本節課是在系統的學習了不等關系和掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續進一步了解不等式的性質及運用,研究最值問題奠定基礎。因此基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,它也是對學生進行情感價值觀教育的好素材,所以基本不等式應重點研究。
【教學目標】
依據《新課程標準》對《不等式》學段的目標要求和學生的實際情況,特確定如下目標:
知識與技能目標:理解掌握基本不等式,理解算數平均數與幾何平均數的概念,學會構造條件使用基本不等式;
過程與方法目標:通過探究基本不等式,使學生體會知識的形成過程,培養分析、解決問題的能力;
情感與態度目標:通過問題情境的設置,使學生認識到數學是從實際中來,培養學生用數學的眼光看世界,通過數學思維認知世界,從而培養學生善于思考、勤于動手的良好品質。
【教學重難點】
重點:理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。
難點:利用基本不等式推導不等式。
關鍵是對基本不等式的理解掌握。
二、教法分析
本節課采用觀察——感知——抽象——歸納——探究;啟發誘導、講練結合的教學方法,以學生為主體,以基本不等式為主線,從實際問題出發,放手讓學生探究思索。利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率。
三、學法指導
新課改的精神在于以學生的發展為本,把學習的主動權還給學生,倡導積極主動,勇于探索的學習方法,因此,本課主要采取以自主探索與合作交流的學習方式,通過讓學生想一想,做一做,用一用,建構起自己的知識,使學生成為學習的主人。
四、教學過程
教學過程設計以問題為中心,以探究解決問題的方法為主線展開。這種安排強調過程,符合學生的認知規律,使數學教學過程成為學生對知識的再創造、再發現的過程,從而培養學生的創新意識。
具體過程安排如下:
(一)基本不等式的教學設計創設情景,提出問題
設計意圖:數學教育必須基于學生的“數學現實”,現實情境問題是數學教學的平臺,數學教師的任務之一就是幫助學生構造數學現實,并在此基礎上發展他們的數學現實。基于此,設置如下情境:
上圖是在北京召開的第24屆國際數學家大會的會標,會標是根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客。
[問題1]請觀察會標圖形,圖中有哪些特殊的幾何圖形?它們在面積上有哪些相等關系和不等關系?(讓學生分組討論)
(二)探究問題,抽象歸納
基本不等式的教學設計1.探究圖形中的不等關系
形的角度----(利用多媒體展示會標圖形的變化,引導學生發現四個直角三角形的面積之和小于或等于正方形的面積。)
數的角度
[問題2]若設直角三角形的兩直角邊分別為a、b,應怎樣表示這種不等關系?
學生討論結果:。
[問題3]大家看,這個圖形里還真有點奧妙。我們從圖中找到了一個不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號什么時候成立呢?(師生共同探索)
咱們再看一看圖形的變化,(教師演示)
(學生發現)當a=b四個直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即。探索結論:我們得到不等式,當且僅當時等號成立。
設計意圖:本背景意圖在于利用圖中相關面積間存在的數量關系,抽象出不等式基本不等式的教學設計。在此基礎上,引導學生認識基本不等式。
2.抽象歸納:
一般地,對于任意實數a,b,有,當且僅當a=b時,等號成立。
[問題4]你能給出它的證明嗎?
學生在黑板上板書。
[問題5]特別地,當時,在不等式中,以、分別代替a、b,得到什么?
學生歸納得出。
設計意圖:類比是學習數學的一種重要方法,此環節不僅讓學生理解了基本不等式的來源,突破了重點和難點,而且感受了其中的函數思想,為今后學習奠定基礎。
【歸納總結】
如果a,b都是非負數,那么,當且僅當a=b時,等號成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術平均數,稱為a,b的幾何平均數。
3.探究基本不等式證明方法:
[問題6]如何證明基本不等式?
設計意圖:在于引領學生從感性認識基本不等式到理性證明,實現從感性認識到理性認識的升華,前面是從幾何圖形中的面積關系獲得不等式的,下面用代數的思想,利用不等式的性質直接推導這個不等式。
方法一:作差比較或由基本不等式的教學設計展開證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當且僅當a=b時,中的等號成立。
4.理解升華
1)文字語言敘述:
兩個正數的算術平均數不小于它們的幾何平均數。
2)符號語言敘述:
若,則有,當且僅當a=b時,。
[問題7]怎樣理解“當且僅當”?(學生小組討論,交流看法,師生總結)
“當且僅當a=b時,等號成立”的含義是:
當a=b時,取等號,即;
僅當a=b時,取等號,即。
3)探究基本不等式的幾何意義:
基本不等式的教學設計借助初中階段學生熟知的幾何圖形,引導學生探究不等式的幾何解釋,通過數形結合,賦予不等式幾何直觀。進一步領悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,
CD⊥AB,AC=a,CB=b,
[問題8]你能利用這個圖形得出基本不等式的幾何解釋嗎?
(教師演示,學生直觀感覺)
易證RtACDRtDCB,那么CD2=CA·CB
即CD=.
這個圓的半徑為,顯然,它大于或等于CD,即,其中當且僅當點C與圓心重合,即a=b時,等號成立。
因此:基本不等式幾何意義可認為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認為是,直角三角形斜邊的一半不小于斜邊上的高。
4)聯想數列的知識理解基本不等式
從形的角度來看,基本不等式具有特定的幾何意義;從數的角度來看,基本不等式揭示了“和”與“積”這兩種結構間的不等關系。
[問題9]回憶一下你所學的知識中,有哪些地方出現過“和”與“積”的結構?
歸納得出:
均值不等式的代數解釋為:兩個正數的等差中項不小它們的等比中項。
基本不等式的教學設計(四)體會新知,遷移應用
例1:(1)設均為正數,證明不等式:基本不等式的教學設計
(2)如圖:AB是圓的直徑,點C是AB上一點,設AC=a,CB=b,
,過作交于,你能利用這個圖形得出這個不等式的一種幾何解釋嗎?
設計意圖:以上例題是根據基本不等式的使用條件中的難點和關鍵處設置的,目的是利用學生原有的平面幾何知識,進一步領悟到不等式成立的條件,及當且僅當時,等號成立。這里完全放手讓學生自主探究,老師指導,師生歸納總結。
(五)演練反饋,鞏固深化
公式應用之一:
1.試判斷與與2的大小關系?
問題:如果將條件“x>0”去掉,上述結論是否仍然成立?
2.試判斷與7的大小關系?
公式應用之二:
設計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強學生的興趣,拓寬學生的視野,更重要的是調動學生探究鉆研的興趣,引導學生加強對生活的關注,讓學生體會:數學就在我們身邊的生活中
(1)用一個兩臂長短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了。你覺得這種做法比實際重量輕了還是重了?
(2)甲、乙兩商場對單價相同的同類產品進行促銷。甲商場采取的促銷方式是在原價p折的基礎上再打q折;乙商場的促銷方式則是兩次都打折。對顧客而言,哪種打折方式更合算?(0
≠q)
(五)反思總結,整合新知:
通過本節課的學習你有什么收獲?取得了哪些經驗教訓?還有哪些問題需要請教?
設計意圖:通過反思、歸納,培養概括能力;幫助學生總結經驗教訓,鞏固知識技能,提高認知水平。從各種角度對均值不等式進行總結,目的是為了讓學生掌握本節課的重點,突破難點
老師根據情況完善如下:
知識要點:
(1)重要不等式和基本不等式的條件及結構特征
(2)基本不等式在幾何、代數及實際應用三方面的意義
思想方法技巧:
(1)數形結合思想、“整體與局部”
(2)歸納與類比思想
(3)換元法、比較法、分析法
(七)布置作業,更上一層
1.閱讀作業:預習基本不等式的教學設計
2.書面作業:已知a,b為正數,證明不等式基本不等式的教學設計
3.思考題:類比基本不等式,當a,b,c均為正數,猜想會有怎樣的不等式?
設計意圖:作業分為三種形式,體現作業的鞏固性和發展性原則,同時考慮學生的差異性。閱讀作業是后續課堂的鋪墊,而思考題不做統一要求,供學有余力的學生課后研究。
五、評價分析
1.在建立新知的過程中,教師力求引導、啟發,讓學生逐步應用所學的知識來分析問題、解決問題,以形成比較系統和完整的知識結構。每個問題在設計時,充分考慮了學生的具體情況,力爭提問準確到位,便于學生思考和回答。使思考和提問持續在學生的最近發展區內,學生的思考有價值,對知識的理解和掌握在不斷的思考和討論中完善和加深。
2.本節的教學中要求學生對基本不等式在數與形兩個方面都有比較充分的認識,特別強調數與形的統一,教學過程從形得到數,又從數回到形,意圖使學生在比較中對基本不等式得以深刻理解。“數形結合”作為一種重要的數學思想方法,不是教師提一提學生就能夠掌握并且會用的,只有學生通過實踐,意識到它的好處之后,學生才會在解決問題時去嘗試使用,只有通過不斷的使用才能促進學生對這種思想方法的再理解,從而達到掌握它的目的。
六、板書設計
§3.3基本不等式
一、重要不等式
二、基本不等式
1.文字語言敘述
2.符號語言敘述
3.幾何意義
4.代數解釋
三、應用舉例
例1.
四、演練反饋
五、總結歸納
1.知識要點
2.思想方法
高二數學教案 21
課題:2。1曲線與方程
課時:01
課型:新授課
一、教學目標
(一)知識教學點
使學生掌握常用動點的軌跡以及求動點軌跡方程的常用技巧與方法。
(二)能力訓練點
通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養學生綜合運用各方面知識的能力。
(三)學科滲透點
通過對求軌跡方程的常用技巧與方法的介紹,使學生掌握常用動點的軌?
二、教材分析
1、重點:求動點的軌跡方程的常用技巧與方法。
(解決辦法:對每種方法用例題加以說明,使學生掌握這種方法。)
2、難點:作相關點法求動點的軌跡方法。
(解決辦法:先使學生了解相關點法的思路,再用例題進行講解。)
教具準備:與教材內容相關的資料。
教學設想:激發學生的學習熱情,激發學生的求知欲,培養嚴謹的學習態度,培養積極進取的精神。
三、教學過程
(一)復習引入
大家知道,平面解析幾何研究的主要問題是:
(1)根據已知條件,求出表示平面曲線的方程;
(2)通過方程,研究平面曲線的性質。
我們已經對常見曲線圓、橢圓、雙曲線以及拋物線進行過這兩個方面的研究,今天在上面已經研究的基礎上來對根據已知條件求曲線的軌跡方程的常見技巧與方法進行系統分析。
(二)幾種常見求軌跡方程的方法
1、直接法
由題設所給(或通過分析圖形的幾何性質而得出)的動點所滿足的幾何條件列出等式,再用坐標代替這等式,化簡得曲線的方程,這種方法叫直接法。
例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動點P的軌跡方程;
(2)過點A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點的軌跡。
對(1)分析:
動點P的軌跡是不知道的,不能考查其幾何特征,但是給出了動點P的運動規律:|OP|=2R或|OP|=0。
解:設動點P(x,y),則有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求動點P的軌跡方程為x2+y2=4R2或x2+y2=0。
對(2)分析:
題設中沒有具體給出動點所滿足的幾何條件,但可以通過分析圖形的幾何性質而得出,即圓心與弦的中點連線垂直于弦,它們的斜率互為負倒數。由學生演板完成,解答為:
設弦的中點為M(x,y),連結OM,則OM⊥AM。∵kOM·kAM=—1,
其軌跡是以OA為直徑的圓在圓O內的一段弧(不含端點)。
2、定義法
利用所學過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點的軌跡方程,這種方法叫做定義法。這種方法要求題設中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件。
直平分線l交半徑OQ于點P(見圖2-45),當Q點在圓周上運動時,求點P的軌跡方程。
分析:
∵點P在AQ的垂直平分線上,∴|PQ|=|PA|。
又P在半徑OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。
故P點到兩定點距離之和是定值,可用橢圓定義
寫出P點的軌跡方程。
解:連接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半徑OQ上。∴|PO|+|PQ|=2。
由橢圓定義可知:P點軌跡是以O、A為焦點的橢圓。
3、相關點法
若動點P(x,y)隨已知曲線上的點Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點坐標表達式代入已知曲線方程,即得點P的軌跡方程。這種方法稱為相關點法(或代換法)。
例3 已知拋物線y2=x+1,定點A(3,1)、B為拋物線上任意一點,點P在線段AB上,且有BP∶PA=1∶2,當B點在拋物線上變動時,求點P的軌跡方程。
分析:
P點運動的原因是B點在拋物線上運動,因此B可作為相關點,應先找出點P與點B的聯系。
解:設點P(x,y),且設點B(x0,y0)
∵BP∶PA=1∶2,
4、待定系數法
求圓、橢圓、雙曲線以及拋物線的方程常用待定系數法求。
例4 已知拋物線y2=4x和以坐標軸為對稱軸、實軸在y軸上的雙曲
曲線方程。
分析:
因為雙曲線以坐標軸為對稱軸,實軸在y軸上,所以可設雙曲線方
ax2—4b2x+a2b2=0
∵拋物線和雙曲線僅有兩個公共點,根據它們的對稱性,這兩個點的橫坐標應相等,因此方程ax2—4b2x+a2b2=0應有等根。
∴△=16b4—4a4b2=0,即a2=2b。
(以下由學生完成)
由弦長公式得:
即a2b2=4b2—a2。
(三)鞏固練習
用十多分鐘時間作一個小測驗,檢查一下教學效果。練習題用一小黑板給出。
1、△ABC一邊的兩個端點是B(0,6)和C(0,—6),另兩邊斜率的
2、點P與一定點F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點P的軌跡方程,并說明軌跡是什么圖形?
3、求拋物線y2=2px(p>0)上各點與焦點連線的中點的軌跡方程。
答案:
義法)
由中點坐標公式得:
(四)、教學反思
求曲線的軌跡方程一般地有直接法、定義法、相關點法、待定系數法,還有參數法、復數法也是求曲線的軌跡方程的常見方法,這等到講了參數方程、復數以后再作介紹。
四、布置作業
1、兩定點的距離為6,點M到這兩個定點的距離的平方和為26,求點M的軌跡方程。
2、動點P到點F1(1,0)的距離比它到F2(3,0)的距離少2,求P點的軌跡。
3、已知圓x2+y2=4上有定點A(2,0),過定點A作弦AB,并延長到點P,使3|AB|=2|AB|,求動點P的軌跡方程。
作業答案:
1、以兩定點A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標系,得點M的軌跡方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P點只能在x軸上且x<1,軌跡是一條射線。
高二數學教案 22
教學目標:
1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.
2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.
教學重點:
復數的幾何意義,復數加減法的幾何意義.
教學難點:
復數加減法的幾何意義.
教學過程:
一 、問題情境
我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?
二、學生活動
問題1 任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?
問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?
問題3 任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?
問題4 復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?
三、建構數學
1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.
2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.
3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.
6.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的.
四、數學應用
例1 在復平面內,分別用點和向量表示下列復數4,2+i,-i,-1+3i,3-2i.
練習 課本P123練習第3,4題(口答).
思考
1.復平面內,表示一對共軛虛數的兩個點具有怎樣的位置關系?
2.如果復平面內表示兩個虛數的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?
3.“a=0”是“復數a+bi(a,b∈R)是純虛數”的__________條件.
4.“a=0”是“復數a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.
例2 已知復數z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數m允許的取值范圍.
例3 已知復數z1=3+4i,z2=-1+5i,試比較它們模的大小.
思考 任意兩個復數都可以比較大小嗎?
例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?
(1)│z│=2;(2)2<│z│<3.
變式:課本P124習題3.3第6題.
五、要點歸納與方法小結
本節課學習了以下內容:
1.復數的幾何意義.
2.復數加減法的幾何意義.
3.數形結合的思想方法.
高二數學教案大全 23
1.本節課的重點是理解算法的概念,體會算法的思想,難點是掌握簡單問題算法的表述。
2.本節課要重點掌握的規律方法
(1)掌握算法的特征,見講1;
(2)掌握設計算法的一般步驟,見講2;
(3)會設計實際問題的算法,見講3.
3.本節課的易錯點
(1)混淆算法的特征,如講1.
(2)算法語言不規范致誤,如講3.
課下能力提升(一)
[學業水平達標練]
題組1算法的含義及特征
1.下列關于算法的說法錯誤的是()
A.一個算法的步驟是可逆的
B.描述算法可以有不同的方式
C.設計算法要本著簡單方便的原則
D.一個算法不可以無止境地運算下去
解析:選A由算法定義可知B、C、D對,A錯。
2.下列語句表達的是算法的有()
①撥本地電話的過程為:1提起話筒;2撥號;3等通話信號;4開始通話或掛機;5結束通話;
②利用公式V=Sh計算底面積為3,高為4的三棱柱的體積;
③x2-2x-3=0;
④求所有能被3整除的正數,即3,6,9,12,….
A.①②B.①②③
C.①②④D.①②③④
解析:選A算法通常是指按照一定規則解決某一類問題的明確和有限的步驟。①②都各表達了一種算法;③只是一個純數學問題,不是一個明確步驟;④的步驟是無窮的,與算法的有窮性矛盾。
3.下列各式中S的值不可以用算法求解的是()
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1+12+…+110000
D.S=1+2+3+4+…
解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.
題組2算法設計
4.給出下面一個算法:
第一步,給出三個數x,y,z.
第二步,計算M=x+y+z.
第三步,計算N=13M.
第四步,得出每次計算結果。
則上述算法是()
A.求和B.求余數
C.求平均數D.先求和再求平均數
解析:選D由算法過程知,M為三數之和,N為這三數的平均數。
5.(2016?東營高一檢測)一個算法步驟如下:
S1,S取值0,i取值1;
S2,如果i≤10,則執行S3,否則執行S6;
S3,計算S+i并將結果代替S;
S4,用i+2的值代替i;
S5,轉去執行S2;
S6,輸出S.
運行以上步驟后輸出的結果S=()
A.16B.25
C.36D.以上均不對
解析:選B由以上計算可知:S=1+3+5+7+9=25,答案為B.
6.給出下面的算法,它解決的是()
第一步,輸入x.
第二步,如果x<0,則y=x2;否則執行下一步。
第三步,如果x=0,則y=2;否則y=-x2.
第四步,輸出y.
A.求函數y=x2?x<0?,-x2?x≥0?的函數值
B.求函數y=x2?x<0?,2?x=0?,-x2?x>0?的函數值
C.求函數y=x2?x>0?,2?x=0?,-x2?x<0?的函數值
D.以上都不正確
解析:選B由算法知,當x<0時,y=x2;當x=0時,y=2;當x>0時,y=-x2.故選B.
7.試設計一個判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關系的算法。
解:算法步驟如下:
第一步,輸入圓心的坐標(a,b)、半徑r和直線方程的系數A、B、C.
第二步,計算z1=Aa+Bb+C.
第三步,計算z2=A2+B2.
第四步,計算d=z1z2.
第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d
8.某商場舉辦優惠促銷活動。若購物金額在800元以上(不含800元),打7折;若購物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折。請為商場收銀員設計一個算法,要求輸入購物金額x,輸出實際交款額y.
解:算法步驟如下:
第一步,輸入購物金額x(x>0).
第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉第四步;否則,執行第三步。
第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.
第四步,輸出y,結束算法。
題組3算法的實際應用
9.國際奧委會宣布2020年夏季奧運會主辦城市為日本的東京。據《中國體育報》報道:對參與競選的5個夏季奧林匹克運動會申辦城市進行表決的操作程序是:首先進行第一輪投票,如果有一個城市得票數超過總票數的一半,那么該城市將獲得舉辦權;如果所有申辦城市得票數都不超過總票數的一半,則將得票最少的城市淘汰,然后進行第二輪投票;如果第二輪投票仍沒選出主辦城市,將進行第三輪投票,如此重復投票,直到選出一個主辦城市為止,寫出投票過程的算法。
解:算法如下:
第一步,投票。
第二步,統計票數,如果一個城市得票數超過總票數的一半,那么該城市就獲得主辦權,否則淘汰得票數最少的城市并轉第一步。
第三步,宣布主辦城市。
[能力提升綜合練]
1.小明中午放學回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準備面條及佐料2分鐘;④用鍋把水燒開10分鐘;⑤煮面條和菜共3分鐘。以上各道工序,除了④之外,一次只能進行一道工序。小明要將面條煮好,最少要用()
A.13分鐘B.14分鐘
C.15分鐘D.23分鐘
解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開10分鐘(同時②洗菜6分鐘+③準備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘。解決一個問題的算法不是的,但在設計時要綜合考慮各個方面的因素,選擇一種較好的算法。
2.在用二分法求方程零點的算法中,下列說法正確的是()
A.這個算法可以求方程所有的零點
B.這個算法可以求任何方程的零點
C.這個算法能求方程所有的近似零點
D.這個算法并不一定能求方程所有的近似零點
解析:選D二分法求方程零點的算法中,僅能求方程的一些特殊的近似零點(滿足函數零點存在性定理的條件),故D正確。
3.(2016?青島質檢)結合下面的算法:
第一步,輸入x.
第二步,判斷x是否小于0,若是,則輸出x+2,否則執行第三步。
第三步,輸出x-1.
當輸入的x的值為-1,0,1時,輸出的結果分別為()
A.-1,0,1B.-1,1,0
C.1,-1,0D.0,-1,1
解析:選C根據x值與0的關系選擇執行不同的步驟。
4.有如下算法:
第一步,輸入不小于2的正整數n.
第二步,判斷n是否為2.若n=2,則n滿足條件;若n>2,則執行第三步。
第三步,依次從2到n-1檢驗能不能整除n,若不能整除,則n滿足條件。
則上述算法滿足條件的n是()
A.質數B.奇數
C.偶數D.合數
解析:選A根據質數、奇數、偶數、合數的定義可知,滿足條件的n是質數。
5.(2016?濟南檢測)輸入一個x值,利用y=x-1求函數值的算法如下,請將所缺部分補充完整:
第一步:輸入x;
第二步:________;
第三步:當x<1時,計算y=1-x;
第四步:輸出y.
解析:以x-1與0的大小關系為分類準則知第二步應填當x≥1時,計算y=x-1.
答案:當x≥1時,計算y=x-1
6.已知一個算法如下:
第一步,令m=a.
第二步,如果b<m,則m=b.<p="">
第三步,如果c<m,則m=c.<p="">
第四步,輸出m.
如果a=3,b=6,c=2,則執行這個算法的結果是________.
解析:這個算法是求a,b,c三個數中的最小值,故這個算法的結果是2.
答案:2
7.下面給出了一個問題的算法:
第一步,輸入a.
第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.
第三步,輸出y的值。
問:(1)這個算法解決的是什么問題?
(2)當輸入的a的值為多少時,輸出的數值最小?最小值是多少?
解:(1)這個算法解決的是求分段函數
y=2a-1,a≥4,a2-2a+3,a<4的函數值的問題。
(2)當a≥4時,y=2a-1≥7;
當a<4時,y=a2-2a+3=(a-1)2+2≥2,
∵當a=1時,y取得最小值2.
∴當輸入的a值為1時,輸出的數值最小為2.
8.“韓信點兵”問題:韓信是漢高祖手下的大將,他英勇善戰,謀略超群,為漢朝的建立立下了不朽功勛。據說他在一次點兵的時候,為保住軍事秘密,不讓敵人知道自己部隊的軍事實力,采用下述點兵方法:①先令士兵從1~3報數,結果最后一個士兵報2;②又令士兵從1~5報數,結果最后一個士兵報3;③又令士兵從1~7報數,結果最后一個士兵報4.這樣韓信很快算出自己部隊里士兵的總數。請設計一個算法,求出士兵至少有多少人。
解:第一步,首先確定最小的滿足除以3余2的正整數:2.
第二步,依次加3就得到所有除以3余2的正整數:2,5,8,11,14,17,20,….
第三步,在上列數中確定最小的滿足除以5余3的正整數:8.
第四步,然后在自然數內在8的基礎上依次加上15,得到8,23,38,53,….
第五步,在上列數中確定最小的滿足除以7余4的正整數:53.
即士兵至少有53人。
高二數學教案 24
(1)平面向量基本定理的內容是什么?
(2)如何定義平面向量基底?
(3)兩向量夾角的定義是什么?如何定義向量的垂直?
[新知初探]
1、平面向量基本定理
條件e1,e2是同一平面內的兩個不共線向量
結論這一平面內的任意向量a,有且只有一對實數λ1,λ2,使a=λ1e1+λ2e2
基底不共線的向量e1,e2叫做表示這一平面內所有向量的一組基底
[點睛]對平面向量基本定理的理解應注意以下三點:①e1,e2是同一平面內的兩個不共線向量;②該平面內任意向量a都可以用e1,e2線性表示,且這種表示是的;③基底不,只要是同一平面內的兩個不共線向量都可作為基底。
2、向量的夾角
條件兩個非零向量a和b
產生過程
作向量=a,=b,則∠AOB叫做向量a與b的夾角
范圍0°≤θ≤180°
特殊情況θ=0°a與b同向
θ=90°a與b垂直,記作a⊥b
θ=180°a與b反向
[點睛]當a與b共線同向時,夾角θ為0°,共線反向時,夾角θ為180°,所以兩個向量的夾角的范圍是0°≤θ≤180°。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)
(1)任意兩個向量都可 ()
(2)一個平面內有無數對不共線的向量都可作為表示該平面內所有向量的基底。()
(3)零向量不可 ()
答案:(1)×(2)√(3)√
2、若向量a,b的夾角為30°,則向量—a,—b的夾角為()
A、60°B、30°
C、120°D、150°
答案:B
3、設e1,e2是同一平面內兩個不共線的向量,以下各組向量中不能作為基底的是()
A、e1,e2B、e1+e2,3e1+3e2
C、e1,5e2D、e1,e1+e2
答案:B
4、在等腰Rt△ABC中,∠A=90°,則向量,的夾角為XXXXXX。
答案:135°
用基底表示向量
[典例]如圖,在平行四邊形ABCD中,設對角線=a,=b,試用基底a,b表示,。
[解]法一:由題意知,==12=12a,==12=12b。
所以=+=—=12a—12b,
=+=12a+12b,
法二:設=x,=y,則==y,
又+=,—=,則x+y=a,y—x=b,
所以x=12a—12b,y=12a+12b,
即=12a—12b,=12a+12b。
用基底表示向量的方法
將兩個不共線的向量作為基底表示其他向量,基本方法有兩種:一種是運用向量的線性運算法則對待求向量不斷進行轉化,直至用基底表示為止;另一種是通過列向量方程或方程組的形式,利用基底表示向量的性求解。
[活學活用]
如圖,已知梯形ABCD中,AD∥BC,E,F分別是AD,BC邊上的中點,且BC=3AD,=a,=b。試以a,b為基底表示。
解:∵AD∥BC,且AD=13BC,
∴=13=13b。
∵E為AD的中點,
∴==12=16b。
∵=12,∴=12b,
∴=++
=—16b—a+12b=13b—a,
=+=—16b+13b—a=16b—a,
=+=—(+)
=—(+)=—16b—a+12b
=a—23b。
高二數學教案 25
一、教學目標
1、知識與技能
(1)理解流程圖的順序結構和選擇結構。
(2)能用文字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖
2、過程與方法
學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。
3情感、態度與價值觀
學生通過動手作圖,、用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想程序化思想,在歸納概括中培養學生的邏輯思維能力。
二、教學重點、難點
重點:算法的順序結構與選擇結構。
難點:用含有選擇結構的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖,、用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。
教學用具:尺規作圖工具,多媒體。
四、教學思路
(一)問題引入揭示課題
例1尺規作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用文字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
(二)觀察類比理解課題
1、投影介紹流程圖的符號、名稱及功能說明。
符號符號名稱功能說明終端框算法開始與結束處理框算法的各種處理操作判斷框算法的各種轉移
輸入輸出框輸入輸出操作指向線指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執行的一個算法
流程圖:
(2)選擇結構
對條件進行判斷來決定后面的步驟的結構
流程圖:
3、用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式求s
③輸出s
流程圖
(2)已知函數對于每輸入一個x值都得到相應的函數值,寫出算法并畫流程圖。
算法:(語言表示)
①輸入x值
②判斷x的范圍,若,用函數Y=x+1求函數值;否則用Y=2—x求函數值
③輸出Y的值
流程圖
小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作經歷課題
1、用流程圖表示確定線段A、B的一個16等分點
2、分析講解例2;
分析:
思考:有多少個選擇結構?相應的流程圖應如何表示?
流程圖:
(四)歸納小結鞏固課題
1、順序結構和選擇結構的模式是怎樣的?
2、怎樣用流程圖表示算法。
(六)作業P991
高二數學優秀教案 26
教學目標
1、知識與技能:理解命題的概念和命題的構成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;
2、過程與方法:多讓學生舉命題的例子,培養他們的辨析能力;以及培養他們的分析問題和解決問題的能力;
3、情感、態度與價值觀:通過學生的參與,激發學生學習數學的興趣。
教學重點與難點
重點:命題的概念、命題的構成
難點:分清命題的條件、結論和判斷命題的真假
教學過程
一、復習回顧
引入:初中已學過命題的知識,請同學們回顧:什么叫做命題?
二、新課教學
下列語句的表述形式有什么特點?你能判斷他們的真假嗎?
(1)若直線a∥b,則直線a與直線b沒有公共點.
(2)2+4=7.
(3)垂直于同一條直線的兩個平面平行.
(4)若x2=1,則x=1.
(5)兩個全等三角形的面積相等.
(6)3能被2整除.
討論、判斷:學生通過討論,總結:所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。
教師的引導分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。
抽象、歸納:
1、命題定義:一般地,我們把用語言、符號或式子表達的,可以判斷真假的陳述句叫做命題.
命題的定義的要點:能判斷真假的陳述句.
在數學課中,只研究數學命題,請學生舉幾個數學命題的例子.教師再與學生共同從命題的定義,判斷學生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的理解.
例1:判斷下列語句是否為命題?
(1)空集是任何集合的子集.
(2)若整數a是素數,則是a奇數.
(3)指數函數是增函數嗎?
(4)若平面上兩條直線不相交,則這兩條直線平行.
(5)=-2.
(6)x>15.
讓學生思考、辨析、討論解決,且通過練習,引導學生總結:判斷一個語句是不是命題,關鍵看兩點:第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.
解略。
引申:以前,同學們學習了很多定理、推論,這些定理、推論是否是命題?同學們可否舉出一些定理、推論的例子來看看?
通過對此問的思考,學生將清晰地認識到定理、推論都是命題.
過渡:同學們都知道,一個定理或推論都是由條件和結論兩部分構成(結合學生所舉定理和推論的例子,讓學生分辨定理和推論條件和結論,明確所有的定理、推論都是由條件和結論兩部分構成)。緊接著提出問題:命題是否也是由條件和結論兩部分構成呢?
2、命題的構成――條件和結論
定義:從構成來看,所有的命題都具由條件和結論兩部分構成.在數學中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結論.
例2:指出下列命題中的條件p和結論q,并判斷各命題的真假.
(1)若整數a能被2整除,則a是偶數.
(2)若四邊行是菱形,則它的對角線互相垂直平分.
(3)若a>0,b>0,則a+b>0.
(4)若a>0,b>0,則a+b<0.
(5)垂直于同一條直線的兩個平面平行.
此題中的(1)(2)(3)(4),較容易,估計學生較容易找出命題中的條件p和結論q,并能判斷命題的真假。其中設置命題(3)與(4)的目的在于:通過這兩個例子的比較,學更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結果是對的還是錯的。
此例中的命題(5),不是“若P,則q”的形式,估計學生會有困難,此時,教師引導學生一起分析:已知的事項為“條件”,由已知推出的事項為“結論”.
解略。
過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結論是正確的,而有些命題的結論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.
3、命題的分類
真命題:如果由命題的條件P通過推理一定可以得出命題的結論q,那么這樣的命題叫做真命題.
假命題:如果由命題的條件P通過推理不一定可以得出命題的結論q,那么這樣的命題叫做假命題.
強調:
(1)注意命題與假命題的區別.如:“作直線AB”.這本身不是命題.也更不是假命題.
(2)命題是一個判斷,判斷的結果就有對錯之分.因此就要引入真命題、假命題的的概念,強調真假命題的大前提,首先是命題。
判斷一個數學命題的真假方法:
(1)數學中判定一個命題是真命題,要經過證明.
(2)要判斷一個命題是假命題,只需舉一個反例即可.
例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:
(1)面積相等的兩個三角形全等。
(2)負數的立方是負數。
(3)對頂角相等。
分析:要把一個命題寫成“若P,則q”的形式,關鍵是要分清命題的條件和結論,然后寫成“若條件,則結論”即“若P,則q”的形式.解略。
三、鞏固練習:
P4第2,3。
四、作業:
P8:習題1.1A組~第1題
五、教學反思
師生共同回憶本節的學習內容.
1、什么叫命題?真命題?假命題?
2、命題是由哪兩部分構成的`?
3、怎樣將命題寫成“若P,則q”的形式.
4、如何判斷真假命題.
高二數學優秀教案5 27
課題1.1.1命題及其關系(一)課型新授課
目標
1)知識方法目標
了解命題的概念,
2)能力目標
會判斷一個命題的真假,并會將一個命題改寫成“若 ,則 ”的形式。
重點
難點
1)重點:命題的改寫
2)難點:命題概念的理解,命題的條件與結論區分
教法與學法
教法:
教學過程備注
1、課題引入
(創設情景)
閱讀下列語句,你能判斷它們的真假嗎?
(1)矩形的對角線相等;
(2)3 ;
(3)3 嗎?
(4)8是24的約數;
(5)兩條直線相交,有且只有一個交點;
(6)他是個高個子。
2、問題探究
1)難點突破
2)探究方式
3)探究步驟
4)高潮設計
1、命題的概念:
①命題:可以判斷真假的陳述句叫做命題(proposition)。
上述6個語句中,(1)(2)(4)(5)(6)是命題。
②真命題:判斷為真的語句叫做真命題(true proposition);
假命題:判斷為假的語句叫做假命題(false proposition)。
上述5個命題中,(2)是假命題,其它4個都是真命題。
③例1:判斷下列語句中哪些是命題?是真命題還是假命題?
(1)空集是任何集合的子集;
(2)若整數 是素數,則 是奇數;
(3)2小于或等于2;
(4)對數函數是增函數嗎?
(5) ;
(6)平面內不相交的兩條直線一定平行;
(7)明天下雨。
(學生自練 個別回答 教師點評)
④探究:學生自我舉出一些命題,并判斷它們的真假。
2、 將一個命題改寫成“若 ,則 ”的形式:
①例1中的(2)就是一個“若 ,則 ”的命題形式,我們把其中的 叫做命題的'條件, 叫做命題的結論。
②試將例1中的命題(6)改寫成“若 ,則 ”的形式。
③例2:將下列命題改寫成“若 ,則 ”的形式。
(1)兩條直線相交有且只有一個交點;
(2)對頂角相等;
(3)全等的兩個三角形面積也相等。
(學生自練 個別回答 教師點評)
3、 小結:命題概念的理解,會判斷一個命題的真假,并會將命題改寫“若 ,則 ”的形式。
引導學生歸納出命題的概念,強調判斷一個語句是不是命題的兩個關鍵點:是否符合“是陳述句”和“可以判斷真假”。
通過例子引導學生辨別命題,區分命題的條件和結論。改寫為“若 ,則 ”的形式,為后續的學習打好基礎。
3、練習提高1. 練習:教材 P4 1、2、3
師生互動
4、作業設計
作業:
1、教材P8第1題
2、作業本1-10
5、課后反思