作為一名無私奉獻(xiàn)的老師,時(shí)常要開展教案準(zhǔn)備工作,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。如何把教案做到重點(diǎn)突出呢?
數(shù)學(xué)八年級(jí)上教案 1
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請(qǐng)看乘法公式
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
8年級(jí)數(shù)學(xué)上冊(cè)教學(xué)工作計(jì)劃 2
一、學(xué)情分析:
今年我任教初二1、2班兩個(gè)班的教學(xué),1班現(xiàn)有學(xué)生57人,十三班現(xiàn)有學(xué)生56人,經(jīng)過一學(xué)年的學(xué)習(xí),在學(xué)生所學(xué)知識(shí)的掌握程度上,從成績(jī)看,優(yōu)中差分化比較大,優(yōu)生不突出,差生相對(duì)較多。學(xué)生的學(xué)習(xí)習(xí)慣也參差不齊。根據(jù)以上情況看,為了使優(yōu)生更加突出,中等生盡快優(yōu)化,差生盡快轉(zhuǎn)化進(jìn)步,本學(xué)期應(yīng)以提高學(xué)生的學(xué)習(xí)積極性,促使優(yōu)生拔高、提高差生的學(xué)習(xí)成績(jī)和促進(jìn)中等生優(yōu)化為主要任務(wù)。
二、教材分析:
本學(xué)期教學(xué)內(nèi)容:
第一章:全等三角形;第二章:軸對(duì)稱;第三章:實(shí)數(shù);第四章:一次函數(shù);第五章:整式的。乘除與因式分解。
三、教學(xué)目標(biāo)及教學(xué)工作計(jì)劃:
教學(xué)工作目標(biāo):
在今學(xué)期的數(shù)學(xué)教學(xué)中,爭(zhēng)取期中、期末考試同科教師中名列前茅。
(1)備課:
按照學(xué)校要求、結(jié)合本學(xué)科實(shí)際充分做到既備教材又備學(xué)生。課時(shí)備課要從學(xué)生實(shí)際出發(fā),站在學(xué)生的角度上考慮,教案要備深、備細(xì),突出實(shí)用性。總領(lǐng)課、新授課、復(fù)習(xí)課、講評(píng)課等各種課型要齊全。根據(jù)要求做到“四落實(shí)”即知識(shí)點(diǎn)落實(shí)、教法落實(shí)、檢測(cè)手段落實(shí)、反饋措施落實(shí)。備課要體現(xiàn)出電教手段的使用。做到提前備課。充分發(fā)揮好集體備課和周二的分科學(xué)習(xí)的作用。
(2)上課:
嚴(yán)格按照“雙線教學(xué)整體推進(jìn)”模式的環(huán)節(jié)授課,讓學(xué)生更多的思考、更多的探索、更多的說和做,使教學(xué)最大限度地滿足學(xué)生個(gè)體差異,實(shí)現(xiàn)課堂教學(xué)的高質(zhì)量和高效率,立足課堂 向四十五分鐘要質(zhì)量。
(3)測(cè)試與反饋矯正:
在教學(xué)中要利用好測(cè)試這一手段,要通過考試幫助學(xué)生尋找差距和造成差距的原因,明確努力方向。在講評(píng)中進(jìn)行糾錯(cuò)、總結(jié)、深化,激勵(lì)學(xué)生向更高的目標(biāo)邁進(jìn)。及時(shí)掌握學(xué)生的學(xué)習(xí)情況,找出薄弱環(huán)節(jié),及時(shí)彌補(bǔ)缺漏。根據(jù)達(dá)標(biāo)測(cè)試的情況寫出質(zhì)量分析。
四、具體落實(shí)措施:
1、加強(qiáng)學(xué)習(xí),取他人之長(zhǎng)補(bǔ)己之短,提高自身素質(zhì)。
2、落實(shí)常規(guī),腳踏實(shí)地,干好自己的本職工作。
3、大膽探索,敢于創(chuàng)新。
4、加強(qiáng)課堂教學(xué)改革,利用各種教學(xué)手段,提高學(xué)生學(xué)習(xí)興趣。培養(yǎng)學(xué)生的自覺學(xué)習(xí)、主動(dòng)學(xué)習(xí)、創(chuàng)新學(xué)習(xí)的好習(xí)慣。
5、加強(qiáng)單元、課時(shí)備課,在吃透教材的基礎(chǔ)上備教材、備學(xué)生,為上好每一堂課做好充分準(zhǔn)備。
6、在教學(xué)中注意分類指導(dǎo),根據(jù)學(xué)生的基礎(chǔ)分類講解,分類檢測(cè)。
五、教學(xué)進(jìn)度:
略。
初二數(shù)學(xué)上冊(cè)教案 3
教學(xué)目標(biāo)
1知識(shí)與技能目標(biāo)
(1)通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性。
(2)能判斷給出的數(shù)是否為無理數(shù),并能說出理由。
2過程與方法目標(biāo)
(1)學(xué)生親自動(dòng)手做拼圖活動(dòng),感受無理數(shù)存在的必要性和合理性,培養(yǎng)學(xué)生的動(dòng)手能力和合作精神。
(2)通過回顧有理數(shù)的有關(guān)知識(shí),能正確地進(jìn)行推理和判斷識(shí)別某些數(shù)是否為有理數(shù)、無理數(shù),訓(xùn)練他們的思維判斷力。
(3)借助計(jì)算器進(jìn)行估算,培養(yǎng)學(xué)生的估算能力,發(fā)展學(xué)生的抽象概括能力,并在活動(dòng)中進(jìn)一步發(fā)展學(xué)生獨(dú)立思考、合作交流的意識(shí)和能力。
3情感與態(tài)度目標(biāo)
(1)激勵(lì)學(xué)生積極參與教學(xué)活動(dòng),提高大家學(xué)習(xí)數(shù)學(xué)的熱情。
(2)引導(dǎo)學(xué)生充分進(jìn)行交流,討論與探索等教學(xué)活動(dòng),培養(yǎng)他們的合作精神與鉆研精神,借助計(jì)算器進(jìn)行估算。
(3)了解有關(guān)無理數(shù)發(fā)現(xiàn)的知識(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻(xiàn)身精神。
教學(xué)重點(diǎn)
1讓學(xué)生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程,感知生活中確實(shí)存在著不同于有理數(shù)的數(shù)。
2會(huì)判斷一個(gè)數(shù)是否為有理數(shù),是否不是有理數(shù)。
3用計(jì)算器進(jìn)行無理數(shù)的估算。
教學(xué)難點(diǎn)
1把兩個(gè)邊長(zhǎng)為1的正方形拼成一個(gè)大正方形的動(dòng)手操作過程。
2無理數(shù)概念的建立及估算。
3判斷一個(gè)數(shù)是否為有理數(shù)。
教學(xué)準(zhǔn)備:多媒體,兩個(gè)邊長(zhǎng)為1的正方形,剪刀,短繩。
教學(xué)過程:
第一環(huán)節(jié):章節(jié)引入(2分鐘,學(xué)生閱讀感受)
內(nèi)容:.小紅是剛升入八年級(jí)的新生,一個(gè)周末的上午,當(dāng)工程師的爸爸給小紅出了兩個(gè)數(shù)學(xué)題:
(1)兩個(gè)數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?
(2)一個(gè)邊長(zhǎng)為6cm的正方形木板,按如圖的痕跡鋸掉四個(gè)一樣的直角三角形。請(qǐng)計(jì)算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長(zhǎng)又是多少厘米呢?你能幫小紅解決這個(gè)問題嗎?
b.你能求出面積為2的正方形的邊長(zhǎng)嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分?jǐn)?shù)(即有理數(shù))來表示嗎?
第二環(huán)節(jié):復(fù)習(xí)引入(3分鐘,學(xué)生口答)
內(nèi)容:閱讀下面的資料,在數(shù)學(xué)中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當(dāng)p=1,q為任意整數(shù)時(shí),有理數(shù)就是指所有的整數(shù),如:=-2等,當(dāng)p≠1時(shí),由p、q互質(zhì)可知,有理數(shù)就是指所有的分?jǐn)?shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分?jǐn)?shù)的統(tǒng)稱。
請(qǐng)用上述材料中所涉及的知識(shí)證明下面的問題:
a.直角邊長(zhǎng)分別為3和1的直角三角形的斜邊長(zhǎng)是不是有理數(shù)?
b.復(fù)習(xí)前面學(xué)過的數(shù),有理數(shù)包括整數(shù)和分?jǐn)?shù),有理數(shù)范圍是否滿足實(shí)際生活的需要呢?
第三環(huán)節(jié):活動(dòng)探究(15分鐘,學(xué)生動(dòng)手操作,小組合作探究)
(一)發(fā)現(xiàn)新數(shù)
內(nèi)容:將課前已準(zhǔn)備好的兩個(gè)邊長(zhǎng)為1的小正方形剪一剪,拼一拼,設(shè)法得到一個(gè)大正方形。
在學(xué)生活動(dòng)的基礎(chǔ)上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:
(1)設(shè)大正方形的邊長(zhǎng)為,應(yīng)滿足什么條件?
(2)滿足:2=2的數(shù)是一個(gè)什么樣的數(shù)?可能是整數(shù)嗎?說明你的理由?
(3)可能是分?jǐn)?shù)嗎?說說你的理由?
引出課題《數(shù)怎么又不夠用了》
(二)感受新數(shù)的廣泛性
內(nèi)容:面積為5的正方形,它的邊長(zhǎng)b可能是有理數(shù)嗎?說說你的理由。
(三)鞏固驗(yàn)證,應(yīng)用拓展
內(nèi)容:aB,C是一個(gè)生活小區(qū)的兩個(gè)路口,BC長(zhǎng)為2千米,A處是一個(gè)花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長(zhǎng)可能是整數(shù)嗎?可能是分?jǐn)?shù)嗎?說明理由。
b如圖(1)是由16個(gè)邊長(zhǎng)為1的小正方形拼成的,試從連接這些
小正方形的兩個(gè)頂點(diǎn)所得的線段中,分別找出兩條長(zhǎng)度是有理數(shù)的線段,兩條長(zhǎng)度不是有理數(shù)的線段
第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學(xué)生閱讀)
內(nèi)容:早在公元前,古希臘數(shù)學(xué)家畢達(dá)哥拉斯認(rèn)為萬物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結(jié)為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述。后來,這個(gè)學(xué)派中的一個(gè)叫希伯索斯的成員發(fā)現(xiàn)邊長(zhǎng)為1的正方形的對(duì)角線的長(zhǎng)不能用整數(shù)或整數(shù)之比來表示,這個(gè)發(fā)現(xiàn)動(dòng)搖了畢達(dá)哥拉斯學(xué)派的信條,據(jù)說,為此希伯斯被投進(jìn)了大海,他為真理而獻(xiàn)出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現(xiàn)。
第五環(huán)節(jié):課時(shí)小結(jié)(2分鐘,全班交流)
內(nèi)容談?wù)劚竟?jié)課你有什么收獲與體會(huì)?有哪些困難需要?jiǎng)e人幫你解決?
b感受數(shù)不夠用了,會(huì)確定一個(gè)數(shù)是有理數(shù)或不是有理數(shù)。
c本節(jié)課用到基本方法:動(dòng)手、操作、觀察、思考,猜想驗(yàn)證,推理,歸納等過程,獲取數(shù)學(xué)知識(shí)。
第六環(huán)節(jié):布置作業(yè)
八年級(jí)上冊(cè)數(shù)學(xué)教案 4
一。教學(xué)目標(biāo):
1、了解方差的定義和計(jì)算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。
二。重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2、難點(diǎn):理解方差公式
3、難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法。可以畫折線圖方法來反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
三。例習(xí)題的意圖分析:
1、教材P125的討論問題的意圖:
(1)。創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2)。為引入方差概念和方差計(jì)算公式作鋪墊。
(3)。介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。
(4)。客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2、教材P154例1的設(shè)計(jì)意圖:
(1)。例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2)。例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
四。課堂引入:
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五。例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):
1、題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2、在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄担@個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3、方差怎樣去體現(xiàn)波動(dòng)大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
六。隨堂練習(xí):
1、從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?
(2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?
2、段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭荆l的成績(jī)比較穩(wěn)定?為什么?
測(cè)試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強(qiáng)10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2、段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。
七。課后練習(xí):
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2、甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3、甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
4、小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆海▎挝唬好耄?/p>
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰呢?
答案:1. 6 2.>、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4、 =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
初二數(shù)學(xué)上冊(cè)教案 5
1、教材分析
(1)知識(shí)結(jié)構(gòu):
(2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2、教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。
(3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。
(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問題。
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。
(二)能力訓(xùn)練點(diǎn)
1、通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2、通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想。
3、會(huì)根據(jù)比較簡(jiǎn)單的條件畫出指定的四邊形。
4、講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類比思想。
(三)德育滲透點(diǎn)
使學(xué)生認(rèn)識(shí)到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。
(四)美育滲透點(diǎn)
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題。
2、教學(xué)難點(diǎn):理解四邊形的。有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師引入新課,學(xué)生觀察圖形,類比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。
【講解新課】
1、四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(同時(shí)學(xué)生在書上畫出上述概念),講解這些概念時(shí):
(1)要結(jié)合圖形。
(2)要與三角形類比。
(3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
(4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系。
(5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。
(6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4—4,圖4—5。
2、四邊形內(nèi)角和定理
教師問:
(1)在圖4—3中對(duì)角線AC把四邊形ABCD分成幾個(gè)三角形?
(2)在圖4—6中兩條對(duì)角線AC和BD把四邊形分成幾個(gè)三角形?
(3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
①2180=360如圖4
②4180—360=360如圖4—7。
例1已知:如圖48,直線于B、于C。
求證:(1) (2) 。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴(kuò)展】
1、四邊形的有關(guān)概念。
2、四邊形對(duì)角線的作用。
3、四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設(shè)計(jì)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習(xí)
教材P122中1、2、3。
八年級(jí)數(shù)學(xué)上冊(cè)教案 6
教學(xué)目標(biāo)
知識(shí)與能力:
1.運(yùn)用類比的方法,通過學(xué)生的合作探究,得出平行四邊形的判定方法.
2.理解平行四邊形的另一種判定方法,并學(xué)會(huì)簡(jiǎn)單運(yùn)用.
過程與方法:
1.經(jīng)歷平行四邊行判別條件的'探索過程,在有關(guān)活動(dòng)中發(fā)展學(xué)生的合情推理意識(shí).
2.在運(yùn)用平行四邊形的判定方法解決問題的過程中,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力和推理論證的表達(dá)能力.
情感、態(tài)度與價(jià)值觀:
通過平行四邊形判別條件的探索,培養(yǎng)學(xué)生面對(duì)挑戰(zhàn),勇于克服困難的意志,鼓勵(lì)學(xué)生大膽嘗試,從中獲得成功的體驗(yàn),激發(fā)學(xué)生的學(xué)習(xí)熱情.
教學(xué)方法啟發(fā)誘導(dǎo)式 教具 三角尺
教學(xué)重點(diǎn)平行四邊形判定方法的探究、運(yùn)用.
教學(xué)難點(diǎn)對(duì)平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運(yùn)用
教學(xué)過程:
第一環(huán)節(jié) 復(fù)習(xí)引入:
問題1:
1.平行四邊形的定義是什么?它有什么作用?
2.判定四邊形是平行四邊形的方法有哪些?
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形。
(2)一組對(duì)邊平行且相等的四邊形是平行四邊形。
(3)兩條對(duì)角線互相平分的四邊形是平行四邊形。
第二環(huán)節(jié) 探索活動(dòng)
活動(dòng):
工具:兩對(duì)長(zhǎng)度分別相等的木條。
動(dòng)手:能否在平面內(nèi)用這四根筆擺成一個(gè)平行四邊形?
思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎?
已知:四邊形ABCD中,AD=BC,AB=CD. 試說明四邊形ABCD是平行四邊形。
思考1.2:以上活動(dòng)事實(shí),能用文字語言表達(dá)嗎?
學(xué)生以小組為單位,利用課前準(zhǔn)備好的學(xué)具動(dòng)手操作、觀察,完成探究活動(dòng)1,共同得到:
(1)只有將兩兩相等的木條分別作為四邊形的兩組對(duì)邊才能得到平行四邊形.
(2)通過觀察、實(shí)驗(yàn)、猜想到:
兩組對(duì)邊分別相等的四邊形是平行四邊形.
在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:
(1)學(xué)生在拼四邊形時(shí),能否將相等兩木條作為四邊形的對(duì)邊;
(2)轉(zhuǎn)動(dòng)四邊形,改變它的形狀的過程中,能否觀察得到在此過程中它始終是一個(gè)平行四邊形;
(3)學(xué)生能否通過獨(dú)立思考、小組合作得出正確的證明思路.
第三環(huán)節(jié) 鞏固練習(xí)
例1 如圖:在四邊形ABCD中,∠1=∠2,∠3=∠4.四邊形ABCD是平行四邊形嗎?為什么?
八年級(jí)數(shù)學(xué)上冊(cè)教案例2 如圖所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,圖中有哪些互相平行的線段?
隨堂練習(xí)
1.判斷下列說法是否正確
(1)一組對(duì)邊平行且另一組對(duì)邊相等的四邊形是平行四邊形 ( )
(2)兩組對(duì)角都相等的四邊形是平行四邊形 ( )
(3)一組對(duì)邊平行且一組對(duì)角相等的四邊形是平行四邊形 ( )
(4)一組對(duì)邊平行,一組鄰角互補(bǔ)的四邊形是平行四邊形 ( )
2.有兩條邊相等,并且另外的兩條邊也相等的四邊形一定是平行四邊形嗎?為什么?
3.如圖所示,四個(gè)全等的三角形拼成一個(gè)大的三角形,找出圖中所有的平行四邊形,并說明理由.
4.如圖:AD是ΔABC的邊BC邊上的中線。
(1)畫圖:延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接BE,CE;
(2)判斷四邊形ABEC的形狀,并說明理由。
第四環(huán)節(jié) 小結(jié):
師生共同小結(jié),主要圍繞下列幾個(gè)問題:
(1)判定一個(gè)四邊形是平行四邊形的方法有哪幾種?
(2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對(duì)你有什么啟發(fā)?
(3)平行四邊形判定的應(yīng)用 集備意見 個(gè)案補(bǔ)充
學(xué)習(xí)建議 7
眾享完整學(xué)習(xí)過程 | 關(guān)鍵動(dòng)作 |
課前預(yù)習(xí) | ①回顧前期相關(guān)知識(shí),掃清學(xué)習(xí)障礙; ②用鉛筆預(yù)習(xí)、做題,聯(lián)系對(duì)比,感悟本講新知識(shí); *預(yù)習(xí)后建議對(duì)比優(yōu)秀學(xué)生的示范. |
聽課 | ①按照老師指令聽課、做題; ②結(jié)合老師的講解示范,用黑筆做下一題,調(diào)整、優(yōu)化預(yù)習(xí)時(shí)的思路; ③用紅筆記錄老師講解的訓(xùn)練要點(diǎn)、自己出錯(cuò)的地方; *聽課后建議對(duì)比優(yōu)秀學(xué)生的示范. |
隨堂測(cè)試 | 按照課堂示范要點(diǎn),用標(biāo)準(zhǔn)動(dòng)作做典型題測(cè)試,并保留演草過程和計(jì)算過程; *做題后建議對(duì)比優(yōu)秀學(xué)生的示范. |
習(xí)題 | ①回顧知識(shí)點(diǎn)睛、課堂筆記,讀一讀、背一背; ②看【例題示范】,邊看邊思考動(dòng)作要領(lǐng); ③做【鞏固練習(xí)】,并保留演草過程和計(jì)算過程; ④完成【思考小結(jié)】,復(fù)習(xí)總結(jié)相關(guān)知識(shí); *做題后建議對(duì)比優(yōu)秀學(xué)生的示范. |
天天練 | ①周一到周六,每天做一套天天練,并思考問與答; ②看解題思路,對(duì)比學(xué)習(xí)天天練示范. |
初二數(shù)學(xué)上冊(cè)教案 8
教學(xué)目標(biāo)
1.掌握正方形的定義、性質(zhì)和判定及它們初步應(yīng)用。
2.理解正方形與平行四邊形、矩形、菱形的內(nèi)在聯(lián)系。
3.通過正方形與平行四邊形、矩形、菱形的聯(lián)系的教學(xué)來提高學(xué)生的邏輯思維能力。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)是正方形的定義及正方形與矩形、菱形的聯(lián)系;
難點(diǎn)是正方形與矩形、菱形的關(guān)系及正方形的性質(zhì)、判定的靈活運(yùn)用。
教學(xué)過程設(shè)計(jì)
一、通過知識(shí)結(jié)構(gòu)的教學(xué),學(xué)習(xí)正方形的知識(shí)。
1.復(fù)習(xí)平行四邊形、矩形、菱形的定義。
學(xué)生邊回答,教師邊用活動(dòng)教具演示平行四邊形演變成矩形、菱形的過程,并畫出它們之間的內(nèi)在聯(lián)系圖。(畫出圖4-50(a)中的四邊形,平行四邊形、矩形、菱形及箭頭)
2.類比聯(lián)想,用運(yùn)動(dòng)方式得出正方形的定義。
問:既然矩形、菱形都能由平行四邊形運(yùn)動(dòng)變化得到,那么正方形呢?
啟發(fā)學(xué)生將小學(xué)熟悉的正方形與平行四邊形作比較,用教具演示出平行四邊形形成正方形的過程,同時(shí)歸納出正方形的定義。教師板書定義并畫出圖4-50中的正方形及箭頭①.
3.完善特殊的平行四邊形的知識(shí)結(jié)構(gòu)。
(1)師生共同分析正方形定義的三個(gè)要點(diǎn):①是平行四邊形;②有一個(gè)角是直角;③有一組鄰邊相等。
(2)對(duì)比正方形與矩形、菱形的定義,得出它們的聯(lián)系:
①由正方形定義①,②條件可知正方形是特殊的矩形。(畫出圖中的箭頭②及正方形集合A5和矩形集合A1)
②由正方形定義的①,③條件可知正方形是特殊的菱形。(畫出圖4-50中的箭頭③及菱形集合A2)
③由正方形的定義的所有條件可知,正方形又是特殊的平行四邊形。(畫出圖4-50中的集合A3)
④平行四邊形、矩形、菱形、正方形都是特殊的四邊形。(畫出圖4-50(b)中四邊形集合A4)
而且從以上過程可知,正方形既是矩形又是菱形。(集合A2與A1的公共部分)
4.從整體知識(shí)結(jié)構(gòu)出發(fā),研究正方形的性質(zhì)和判定。
(1)正方形的性質(zhì)。
引導(dǎo)學(xué)生由正方形與矩形、菱形的關(guān)系得知:正方形具有矩形和菱形的一切性質(zhì)。讓學(xué)生復(fù)習(xí)矩形和菱形的性質(zhì),從而得到正方形的性質(zhì)。
①邊:四邊都相等。(性質(zhì)定理1)
②角:四個(gè)角都是直角。
③對(duì)角線:相等、互相垂直平分,每條對(duì)角線平分一組對(duì)角。(性質(zhì)定理2)
(2)正方形的判定。
引導(dǎo)學(xué)生根據(jù)正方形與平行四邊形、矩形、菱形之間的關(guān)系,總結(jié)出正方形的三類判定方法:
①先判定四邊形是平行四邊形,再判定它是正方形;(圖4-50(a)中箭頭①)
②先判定四邊形是矩形,再判定這個(gè)矩形又是菱形;(圖4-50(a)中箭頭②)
③先判定四邊形是菱形,再判定這個(gè)菱形又是矩形。(圖4-50(a)中箭頭③)
(3)鞏固練習(xí):判斷下列命題是否正確,不是正方形的補(bǔ)充什么條件能讓它成為正方形?
①四個(gè)角都相等的四邊形是正方形;(×)
②四條邊都相等的四邊形是正方形;(×)
③對(duì)角線相等的菱形是正方形;(√)
④對(duì)角線互相垂直的矩形是正方形;(√)
⑤對(duì)角
八年級(jí)數(shù)學(xué)上冊(cè)學(xué)習(xí)步驟 9
訓(xùn)練板塊 | 訓(xùn)練目標(biāo) |
三角形 | 通過角的相關(guān)計(jì)算和證明,培養(yǎng)學(xué)生“看到什么想什么”的思考方式,熟練調(diào)用與角有關(guān)的定理,打通已知和所求,形成完整的思維鏈條;讓學(xué)生初步體驗(yàn)輔助線的作用,依據(jù)定理,通過“搭橋、補(bǔ)全”轉(zhuǎn)為基本圖形解決. 訓(xùn)練學(xué)生掌握幾何作圖基本操作和規(guī)范的幾何語言;按照先拆解再合練、先填空再獨(dú)立書寫的方式,分解動(dòng)作訓(xùn)練學(xué)生的書寫表達(dá),為全等三角形的訓(xùn)練做好鋪墊. |
全等三角形 | 在掌握全等三角形的性質(zhì)及判定的基礎(chǔ)上,以典型特征(中點(diǎn),線段的和差倍分等)下輔助線的作法倍長(zhǎng)中線、截長(zhǎng)補(bǔ)短等為例,進(jìn)一步訓(xùn)練學(xué)生對(duì)全等結(jié)構(gòu)的認(rèn)識(shí),并能夠根據(jù)特征構(gòu)造全等三角形來解決問題;通過類比探究、動(dòng)點(diǎn)問題等綜合性題目,培養(yǎng)學(xué)生在固定框架下有序思考,有序操作的能力. |
軸對(duì)稱 | 在掌握等腰三角形性質(zhì)及判定的基礎(chǔ)上,進(jìn)一步訓(xùn)練學(xué)生對(duì)特殊等腰三角形(等邊三角形、等腰直角三角形)的認(rèn)識(shí)以及在特殊結(jié)構(gòu)(三線中已知兩線)中構(gòu)造等腰三角形解決問題的能力,培養(yǎng)學(xué)生有理有據(jù)的推理能力和結(jié)構(gòu)化意識(shí). |
整式的乘法與因式分解 | 在學(xué)習(xí)了整式的運(yùn)算法則的基礎(chǔ)上,進(jìn)一步從整體代入、幾何表示以及公式的逆用等方面來學(xué)習(xí)整式.重在讓學(xué)生掌握整體代入的思想方法,靈活運(yùn)用知二求二進(jìn)行計(jì)算,通過公式幾何表示的講解,建立起代數(shù)和幾何之間的聯(lián)系.訓(xùn)練學(xué)生觀察、歸納、轉(zhuǎn)化的代數(shù)推理能力. 因式分解模塊在“一提、二套、三分、四查”的基本思路下,訓(xùn)練換元、拆項(xiàng)添項(xiàng)、待定系數(shù)等恒等變形技巧,構(gòu)造或轉(zhuǎn)化為熟悉模型結(jié)構(gòu),把復(fù)雜問題轉(zhuǎn)為四種基本方法解決,訓(xùn)練學(xué)生轉(zhuǎn)化化歸的能力,提升學(xué)生的代數(shù)運(yùn)算技能、分析推理能力. |
分式 | 調(diào)用分式的基本性質(zhì)、運(yùn)算法則和應(yīng)用,通過特征的觀察與分析,輔以恰當(dāng)?shù)拇鷶?shù)變形技巧(逐項(xiàng)通分、裂項(xiàng)相消、換元、取倒數(shù)、設(shè)參數(shù)等)來解決問題,訓(xùn)練學(xué)生轉(zhuǎn)化化歸、整體代入的數(shù)學(xué)思想. |
數(shù)學(xué)八年級(jí)上冊(cè)教案 10
一、 教學(xué)目標(biāo)
1.了解分式、有理式的概念。
2.理解分式有意義的條件,能熟練地求出分式有意義的條件。
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件。
2.難點(diǎn):能熟練地求出分式有意義的條件。
三、課堂引入
1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:
2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的'流速為多少?
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3.以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義。
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍。
[補(bǔ)充提問]如果題目為:當(dāng)字母為何值時(shí),分式無意義。你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念。
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
(1) (2) (3)
[分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解。
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,
2. 當(dāng)x取何值時(shí),下列分式有意義?
(1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
(1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
(1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí)。
(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí)。
(3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
八年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)教案 11
第11章 三角形
教材內(nèi)容
本章主要內(nèi)容有三角形的有關(guān)線段、角,多邊形及內(nèi)角和,鑲嵌等。
三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。教材通過實(shí)驗(yàn)讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于1800的基礎(chǔ)上,進(jìn)行推理論證,從而得出三角形外角的性質(zhì)。接著由推廣三角形的有關(guān)概念,介紹了多邊形的有關(guān)概念,利用三角形的有關(guān)性質(zhì)研究了多邊形的內(nèi)角和、外角和公式。這些知識(shí)加深了學(xué)生對(duì)三角形的認(rèn)識(shí),既是學(xué)習(xí)特殊三角形的基礎(chǔ),也是研究其它圖形的基礎(chǔ)。最后結(jié)合實(shí)例研究了鑲嵌的有關(guān)問題,體現(xiàn)了多邊形內(nèi)角和公式在實(shí)際生活中的應(yīng)用。
教學(xué)目標(biāo)
〔知識(shí)與技能〕 www. 12999. com
1、理解三角形及有關(guān)概念,會(huì)畫任意三角形的高、中線、角平分線;2、了解三角形的穩(wěn)定性,理解三角形兩邊的和大于第三邊,會(huì)根據(jù)三條線段的長(zhǎng)度判斷它們能否構(gòu)成三角形;3、會(huì)證明三角形內(nèi)角和等于1800,了解三角形外角的性質(zhì)。4、了解多邊形的有關(guān)概念,會(huì)運(yùn)用多邊形的內(nèi)角和與外角和公式解決問題。5、理解平面鑲嵌,知道任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面,并能運(yùn)用它們進(jìn)行簡(jiǎn)單的平面鑲嵌設(shè)計(jì)。
〔過程與方法〕
1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;2、在靈活運(yùn)用知識(shí)解決有關(guān)問題的過程中,體驗(yàn)并掌握探索、歸納圖形性質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡(jiǎn)單推理的能力。
〔情感、態(tài)度與價(jià)值觀〕
1、體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決一些簡(jiǎn)單的實(shí)際問題,增強(qiáng)應(yīng)用意識(shí);3、使學(xué)生進(jìn)一步形成數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn)。
重點(diǎn)難點(diǎn)
三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點(diǎn);三角形內(nèi)角和等于1800的證明,根據(jù)三條線段的長(zhǎng)度判斷它們能否構(gòu)成三角形及簡(jiǎn)單的平面鑲嵌設(shè)計(jì)是難點(diǎn)。
課時(shí)分配
11.1與三角形有關(guān)的線段 ……………………………………… 2課時(shí)
11.2 與三角形有關(guān)的角 ………………………………………… 2課時(shí)
11.3多邊形及其內(nèi)角和 ………………………………………… 2課時(shí)
本章小結(jié) ………………………………………………………… 2課時(shí)
11.1.1三角形的邊
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1了解三角形的意義,認(rèn)識(shí)三角形的邊、內(nèi)角、頂點(diǎn),能用符號(hào)語言表示三角形 ;
2理解三角形三邊不等的關(guān)系,會(huì)判斷三條線段能否構(gòu)成一個(gè)三角形,并能運(yùn)用它解決有關(guān)的問題。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣;
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形的有關(guān)概念和符號(hào)表示,三角形三邊間的不等關(guān)系是重點(diǎn);用三角形三邊不等關(guān)系判定三條線段可否組成三角形是難點(diǎn)。
[教學(xué)過程]
一、情景導(dǎo)入
三角形是一種最常見的幾何圖形, [投影1-6]如古埃及金字塔,香港中銀大廈,交通標(biāo)志,等等,處處都有三角形的形象。
那么什么叫做三角形呢?
二、三角形及有關(guān)概念
不在一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。
注意:三條線段必須①不在一條直線上,②首尾順次相接。
組成三角形的線段叫做三角形的邊,相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡(jiǎn)稱角,相鄰兩邊的公共端點(diǎn)是三角形的頂點(diǎn)。
三角形ABC用符號(hào)表示為△ABC。三角形ABC的頂點(diǎn)C所對(duì)的邊AB可用c 表示,頂點(diǎn)B所對(duì)的邊AC可用b表示,頂點(diǎn)A所對(duì)的邊BC可用a表示。
三、三角形三邊的不等關(guān)系
探究:[投影7]任意畫一個(gè)△ABC,假設(shè)有一只小蟲要從B點(diǎn)出發(fā),沿三角形的邊爬到C,它有幾種路線可以選擇?各條路線的長(zhǎng)一樣嗎?為什么?
有兩條路線:(1)從B→C,(2)從B→A→C;不一樣, AB+AC>BC?
同樣地有 AC+BC>AB ②
AB+BC>AC ③
由式子①②③我們可以知道什么?
三角形的任意兩邊之和大于第三邊。
四、三角形的分類
我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三角形、鈍角三角形?
按角分類:
三角形 直角三角形
斜三角形 銳角三角形
鈍角三角形
那么三角形按邊如何進(jìn)行分類呢?請(qǐng)你按“有幾條邊相等”將三角形分類。
三邊都相等的三角形叫做等邊三角形;
有兩條邊相等的三角形叫做等腰三角形;
三邊都不相等的三角形叫做不等邊三角形。
顯然,等邊三角形是特殊的等腰三角形。
按邊分類:
三角形 不等邊三角形
等腰三角形 底和腰不等的等腰三角形
等邊三角形
五、例題
例 用一條長(zhǎng)為18㎝的細(xì)繩圍成一個(gè)等腰三角形。(1)如果腰長(zhǎng)是底邊的2倍,那么各邊的長(zhǎng)是多少?(2)能圍成有一邊長(zhǎng)為4㎝的等腰三角形嗎?為什么?
分析:(1)等腰三角形三邊的長(zhǎng)是多少?若設(shè)底邊長(zhǎng)為x㎝,則腰長(zhǎng)是多少?(2)“邊長(zhǎng)為4㎝”是什么意思?
解:(1)設(shè)底邊長(zhǎng)為x㎝,則腰長(zhǎng)2 x㎝。
x+2x+2x=18
解得x=3.6
所以,三邊長(zhǎng)分別為3.6㎝,7.2㎝,7.2㎝.
(2)如果長(zhǎng)為4㎝的邊為底邊,設(shè)腰長(zhǎng)為x㎝,則
4+2x=18
解得x=7
如果長(zhǎng)為4㎝的邊為腰,設(shè)底邊長(zhǎng)為x㎝,則
2×4+x=18
解得x=10
因?yàn)?+4<10,出現(xiàn)兩邊的和小于第三邊的情況,所以不能圍成腰長(zhǎng)是4㎝的等腰三角形。
由以上討論可知,可以圍成底邊長(zhǎng)是4㎝的等腰三角形。
五、課堂練習(xí)
課本4頁練習(xí)1、2題。
六、課堂小結(jié)
1、三角形及有關(guān)概念;
2、三角形的分類;
3、三角形三邊的不等關(guān)系及應(yīng)用。
作業(yè):
課本8頁1、2、6;
教后記
11.1.2 三角形的高、中線與角平分線
〔教學(xué)目標(biāo)〕
〔知識(shí)與技能〕
1、經(jīng)歷畫圖的過程,認(rèn)識(shí)三角形的高、中線與角平分線;
2、會(huì)畫三角形的高、中線與角平分線;3、了解三角形的三條高所在的直線,三條中線,三條角平分線分別交于一點(diǎn)。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
〔重點(diǎn)難點(diǎn)〕三角形的高、中線與角平分線是重點(diǎn);三角形的角平分線與角的平分線的區(qū)別,畫鈍角三角形的高是難點(diǎn)。
〔教學(xué)過程〕
一、導(dǎo)入新課
我們已經(jīng)知道什么是三角形,也學(xué)過三角形的高。三角形的主要線段除高外,還有中線和角平分線值得我們研究。
二、三角形的高
請(qǐng)你在圖中畫出△ABC的一條高并說說你畫法。
從△ABC的頂點(diǎn)A向它所對(duì)的邊BC所在的直線畫垂線,垂足為D,所得線段AD叫做△ABC的邊BC上的高,表示為AD⊥BC于點(diǎn)D。
注意:高與垂線不同,高是線段,垂線是直線。
請(qǐng)你再畫出這個(gè)三角形AB 、AC邊上的高,看看有什么發(fā)現(xiàn)?
三角形的三條高相交于一點(diǎn)。
如果△ABC是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?
現(xiàn)在我們來畫鈍角三角形三邊上的高,如圖。
顯然,上面的結(jié)論成立。
請(qǐng)你畫一個(gè)直角三角形,再畫出它三邊上的高。
上面的結(jié)論還成立。
三、三角形的中線
如圖,我們把連結(jié)△ABC的頂點(diǎn)A和它的對(duì)邊BC的中點(diǎn)D,所得線段AD叫做△ABC的邊BC上的中線,表示為BD=DC或BD=DC=1/2BC或2BD=2DC=BC.
請(qǐng)你在圖中畫出△ABC的另兩條邊上的中線,看看有什么發(fā)現(xiàn)?
三角的三條中線相交于一點(diǎn)。
如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫圖回答。
上面的結(jié)論還成立。
四、三角形的角平分線
如圖,畫∠A的平分線AD,交∠A所對(duì)的邊BC于點(diǎn)D,所得線段AD叫做△ABC的角平分線,表示為∠BAD=∠CAD或∠BAD=∠CAD=1/2∠BAC或2∠BAD=2∠CAD=∠BAC。
思考:三角形的角平分線與角的平分線是一樣的嗎?
三角形的角平分線是線段,而角的平分線是射線,是不一樣的。
請(qǐng)你在圖中再畫出另兩個(gè)角的平分線,看看有什么發(fā)現(xiàn)?
三角形三個(gè)角的平分線相交于一點(diǎn)。
如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請(qǐng)畫圖回答。
上面的結(jié)論還成立。
想一想:三角形的三條高、三條中線、三條角平分線的交點(diǎn)有什么不同?
三角形的三條中線的交點(diǎn)、三條角平分線的交點(diǎn)在三角形的內(nèi)部,而銳三角形的三條高的交點(diǎn)在三角形的內(nèi)部,直角三角形三條高的交戰(zhàn)在角直角頂點(diǎn),鈍角三角形的三條高的交點(diǎn)在三角形的外部。
五、課堂練習(xí)
課本5頁練習(xí)1、2題。
六、課堂小結(jié)
1、三角形的高、中線、角平分線的概念和畫法。
2、三角形的三條高、三條中線、三條角平分線及交點(diǎn)的位置規(guī)律。
七作業(yè):
課本8頁3、4;
八、教后記
11.1.3三角形的穩(wěn)定性
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1、 知道三角形具有穩(wěn)定性,四邊形沒有穩(wěn)定性;2、了解三角形的穩(wěn)定性在生產(chǎn)、生活中的應(yīng)用。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形穩(wěn)定性及應(yīng)用。
[教學(xué)過程]
一、情景導(dǎo)入
蓋房子時(shí),在窗框未安裝之前,木工師傅常常先在窗框上斜釘一根木條,為什么要這樣做呢?
二、三角形的穩(wěn)定性
〔實(shí)驗(yàn)〕1、把三根木條用釘子釘成一個(gè)三角形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?
不會(huì)改變。
2、把四根木條用釘子釘成一個(gè)四邊形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?
會(huì)改變。
3、在四邊形的木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來,然后扭動(dòng)它,它的形狀會(huì)改變嗎?
不會(huì)改變。
從上面的實(shí)驗(yàn)中,你能得出什么結(jié)論?
三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性。
三、三角形穩(wěn)定性和四邊形不穩(wěn)定的應(yīng)用
三角形具有穩(wěn)定性固然好,四邊形不具有穩(wěn)定性也未必不好,它們?cè)谏a(chǎn)和生活中都有廣泛的應(yīng)用。如:
鋼架橋、屋頂鋼架和起重機(jī)都是利用三角形的穩(wěn)定性,活動(dòng)掛架則是利用四邊形的不穩(wěn)定性。
你還能舉出一些例子嗎?
四、課堂練習(xí)
1、下列圖形中具有穩(wěn)定性的是( )
A正方形 B長(zhǎng)方形 C直角三角形 D平行四邊形
2、要使下列木架穩(wěn)定各至少需要多少根木棍?
3、課本7頁練習(xí)。
五作業(yè):8頁5;9頁10題。
六、教后記
11.2.1三角形的內(nèi)角
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
掌握三角形內(nèi)角和定理。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形內(nèi)角和定理是重點(diǎn);三角形內(nèi)角和定理的證明是難點(diǎn)。
[教學(xué)過程]
一、導(dǎo)入新課
我們?cè)谛W(xué)就知道三角形內(nèi)角和等于1800,這個(gè)結(jié)論是通過實(shí)驗(yàn)得到的,這個(gè)命題是不是真命題還需要證明,怎樣證明呢?
二、三角形內(nèi)角和的證明
回顧我們小學(xué)做過的實(shí)驗(yàn),你是怎樣操作的?
把一個(gè)三角形的兩個(gè)角剪下拼在第三個(gè)角的頂點(diǎn)處,用量角器量出
∠BCD的度數(shù),可得到∠A+∠B+∠ACB=1800。[投影1]
圖1
想一想,還可以怎樣拼?
①剪下∠A,按圖(2)拼在一起,可得到∠A+∠B+∠ACB=1800。
圖2
②把和剪下按圖(3)拼在一起,可得到∠A+∠B+∠ACB=1800。
如果把上面移動(dòng)的角在圖上進(jìn)行轉(zhuǎn)移,由圖1你能想到證明三角形內(nèi)角和等于1800的方法嗎?
已知△ABC,求證:∠A+∠B+∠C=1800。
證明一
過點(diǎn)C作CM∥AB,則∠A=∠ACM,∠B=∠DCM,
又∠ACB+∠ACM+∠DCM=1800
∴∠A+∠B+∠ACB=1800。
即:三角形的內(nèi)角和等于1800。
由圖2、圖3你又能想到什么證明方法?請(qǐng)說說證明過程。
三、例題
例 如圖,C島在A島的北偏東500方向,B島在A島的北偏東800方向,C島在B島的北偏西400方向,從C島看A、B兩島的視角∠ACB是多少度?
分析:怎樣能求出∠ACB的度數(shù)?
根據(jù)三角形內(nèi)角和定理,只需求出∠CAB和∠CBA的度數(shù)即可。
∠CAB等于多少度?怎樣求∠CBA的度數(shù)?
解:∠CBA=∠BAD-∠CAD=800-500=300
∵AD∥BE ∴∠BAD+∠ABE=1800
∴∠ABE=1800-∠BAD=1800-800=1000
∴∠ABC=∠ABE-∠EBC=1000-400=600
∴∠ACB=1800-∠ABC-∠CAB=1800-600-300=900
答:從C島看AB兩島的視角∠ACB=1800是900。
四、課堂練習(xí)
課本13頁1、2題。
五作業(yè):
16頁1、3、4;
六、教后記
11.2.2三角形的外角
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
理解三角形的外角;2、掌握三角形外角的性質(zhì),能利用三角形外角的性質(zhì)解決問題。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]三角形的外角和三角形外角的性質(zhì)是重點(diǎn);理解三角形的外角是難點(diǎn)。
[教學(xué)過程]
一、導(dǎo)入新課
〔投影1〕如圖,△ABC的三個(gè)內(nèi)角是什么?它們有什么關(guān)系?
是∠A、∠B、∠C,它們的和是1800。
若延長(zhǎng)BC至D,則∠ACD是什么角?這個(gè)角與△ABC的三個(gè)內(nèi)角有什么關(guān)系?
二、三角形外角的概念
∠ACD叫做△ABC的外角。也就是,三角形一邊與另一邊的延長(zhǎng)線組成的角,叫做三角形的外角。
想一想,三角形的外角共有幾個(gè)?
共有六個(gè)。
注意:每個(gè)頂點(diǎn)處有兩個(gè)外角,它們是對(duì)頂角。研究與三角形外角有關(guān)的問題時(shí),通常每個(gè)頂點(diǎn)處取一個(gè)外角。
三、三角形外角的性質(zhì)
容易知道,三角形的外角∠ACD與相鄰的內(nèi)角∠ACB是鄰補(bǔ)角,那與另外兩個(gè)角有怎樣的數(shù)量關(guān)系呢?
〔投影2〕如圖,這是我們證明三角形內(nèi)角和定理時(shí)畫的輔助線,你能就此圖說明∠ACD與∠A、 ∠B的關(guān)系嗎?
∵CE∥AB, ∴∠A=∠1,∠B=∠2
又∠ACD=∠1+∠2
∴∠ACD=∠A+∠B
你能用文字語言敘述這個(gè)結(jié)論嗎?
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和。
由加數(shù)與和的關(guān)系你還能知道什么?
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。
即 ,。
四、例題
〔投影3〕例 如圖,∠1、∠2、∠3是三角形ABC的三個(gè)外角,它們的和是多少?
分析:∠1與∠BAC、∠2與∠ABC、∠3與∠ACB有什么關(guān)系?∠BAC、ABC、∠ACB有什么關(guān)系?
解:∵∠1+∠BAC=1800,∠2+∠ABC=1800,∠3+∠ACB=1800,
∴∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=5400
又∠BAC+∠ABC+∠ACB=1800
∴∠1+∠2+∠3==3600。
你能用語言敘述本例的結(jié)論嗎?
三角形外角的和等于3600。
五、課堂練習(xí)
課本15頁練習(xí);
六、課堂小結(jié)
1、什么是三角形外角?
2、三角形的外角有哪些性質(zhì)?
七、作業(yè):
課本12頁5、6;
八、教后記
11.3.1 多邊形
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1、 了解多邊形及有關(guān)概念,理解正多邊形的概念。2、區(qū)別凸多邊形與凹多邊形。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]多邊形及有關(guān)概念、正多邊形的概念是重點(diǎn);區(qū)別凸多邊形與凹多邊形是難點(diǎn)。
[教學(xué)過程]
一、情景導(dǎo)入
[投影1]看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?
二、多邊形及有關(guān)概念
這些圖形有什么特點(diǎn)?
由幾條線段組成;它們不在同一條直線上;首尾順次相接。
這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。
多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,一個(gè)多邊形由幾條線段組成,就叫做幾邊形,三角形是最簡(jiǎn)單的多邊形。
與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的∠A、∠B、∠C、∠D、∠E。多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。如圖中的∠1是五邊形ABCDE的一個(gè)外角。[投影2]
連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
四邊形有幾條對(duì)角線?五邊形有幾條對(duì)角線?畫圖看看。
你能猜想n邊形有多少條對(duì)角線嗎?說說你的想法。
n邊形有1/2n(n-3)條對(duì)角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可以引n-3條對(duì)角線,n個(gè)頂點(diǎn)共引n(n-3)條對(duì)角線,又由于連接任意兩個(gè)頂點(diǎn)的兩條對(duì)角線是相同的,所以,n邊形有1/2n(n-3)條對(duì)角線。
三、凸多邊形和凹多邊形
[投影3]如圖,下面的兩個(gè)多邊形有什么不同?
在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。
注意:今后我們討論的多邊形指的都是凸多邊形。
四、正多邊形的概念
五、課堂練習(xí)
課本21頁練習(xí)1、2。
3、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來說明嗎?
六、課堂小結(jié)
1、多邊形及有關(guān)概念。
2、區(qū)別凸多邊形和凹多邊形。
3、正多邊形的概念。
4、n邊形對(duì)角線有1/2n(n-3)條。
七、作業(yè):
課本24頁1。
八、教后記
11.3.2 多邊形的內(nèi)角和
[教學(xué)目標(biāo)]
〔知識(shí)與技能〕
1、 了解多邊形的內(nèi)角、外角等概念;
2、 2、能通過不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算。
〔過程與方法〕
在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推理的習(xí)慣
〔情感、態(tài)度與價(jià)值觀〕
體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心
[重點(diǎn)難點(diǎn)]多邊形的內(nèi)角和與多邊形的外角和公式是重點(diǎn);多邊形的內(nèi)角和定理的推導(dǎo)是難點(diǎn)。
[教學(xué)過程]
一、復(fù)習(xí)導(dǎo)入
我們已經(jīng)證明了三角形的內(nèi)角和為180°,在小學(xué)我們用量角器量過四邊形的內(nèi)角的度數(shù),知道四邊形內(nèi)角的和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?
二、多邊形的內(nèi)角和
〔投影1〕如圖,從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將四邊形分成幾個(gè)三角形?那么四邊形的內(nèi)角和等于多少度?
可以引一條對(duì)角線;它將四邊形分成兩個(gè)三角形;因此,四邊形的內(nèi)角和=△ABD的內(nèi)角和+△BDC的內(nèi)角和=2×180°=360°。
類似地,你能知道五邊形、六邊形…… n邊形的內(nèi)角和是多少度嗎?
〔投影2〕觀察下面的圖形,填空:
五邊形 六邊形
從五邊形一個(gè)頂點(diǎn)出發(fā)可以引 對(duì)角線,它們將五邊形分成 三角形,五邊形的內(nèi)角和等于 ;
從六邊形一個(gè)頂點(diǎn)出發(fā)可以引 對(duì)角線,它們將六邊形分成 三角形,六邊形的內(nèi)角和等于 ;
〔投影3〕從n邊形一個(gè)頂點(diǎn)出發(fā),可以引 對(duì)角線,它們將n邊形分成 三角形,n邊形的內(nèi)角和等于 。
n邊形的內(nèi)角和等于(n一2)·180°.
從上面的討論我們知道,求n邊形的內(nèi)角和可以將n邊形分成若干個(gè)三角形來求。現(xiàn)在以五邊形為例,你還有其它的分法嗎?
分法一 〔投影3〕如圖1,在五邊形ABCDE內(nèi)任取一點(diǎn)O,連結(jié)OA、OB、OC、OD、OE,則得五個(gè)三角形。
∴五邊形的內(nèi)角和為5×180°一2×180°=(5—2)×180°=540°。
圖1 圖2
分法二 〔投影4〕如圖2,在邊AB上取一點(diǎn)O,連OE、OD、OC,則可以(5-1)個(gè)三角形。
∴五邊形的內(nèi)角和為(5—1)×180°一180°=(5—2)×180°
如果把五邊形換成n邊形,用同樣的方法可以得到n邊形內(nèi)角和=(n一2)×180°.
三、例題
〔投影6〕例1 如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系?
如圖,已知四邊形ABCD中,∠A+∠C=180°,求∠B與∠D的關(guān)系。
分析:∠A、∠B、∠C、∠D有什么關(guān)系?
解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°
又∠A+∠C=180°
∴∠B+∠D= 360°-(∠A+∠C)=180°
這就是說,如果四邊形一組對(duì)角互補(bǔ),那么另一組對(duì)角也互補(bǔ)。
〔投影7〕例2 如圖,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做六邊形的外角和。六邊形的外角和等于多少?
如圖,已知∠1,∠2,∠3,∠4,∠5,∠6分別為六邊形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值。
分析:多邊形的一個(gè)外角同與它相鄰的內(nèi)角有什么關(guān)系?六邊形的內(nèi)角和是多少度?
解:∵∠1+∠BAF=180° ∠2+∠ABC=180°∠3+∠BAD=180°
∠4+∠CDE=180°∠5+∠DEF=180° ∠6+∠EFA=180°
∴∠1+∠BAF+∠2+∠ABC+∠3+∠BAD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°
又∠1+∠2+∠3+∠4+∠5+∠6=4×180°
∴∠BAF+∠ABC+∠BAD+∠CDE+∠DEF+∠EFA=6×180°-4×180°=360°
這就是說,六邊形形的外角和為360°。
如果把六邊形換成n邊形可以得到同樣的結(jié)果:
n邊形的外角和等于360°。
對(duì)此,我們也可以這樣來理解。〔投影8〕如圖,從多邊形的一個(gè)頂點(diǎn)A出發(fā),沿多邊形各邊走過各頂點(diǎn),再回到A點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360°.
四、課堂練習(xí)
課本24頁1、2、3題。
五、課堂小結(jié)
n邊形的內(nèi)角和是多少度?
n邊形的外角和是多少度?
六、作業(yè):
課本24頁2、3;
七、教后記
本章小結(jié)
一、知識(shí)結(jié)構(gòu)
二、回顧與思考
1、什么是三角形?什么是多邊形?什么是正多邊形?
三角形是不是多邊形?
2、什么是三角形的高、中線、角平分線?什么是對(duì)角線?
三角形有對(duì)角線嗎?n邊形的的對(duì)角線有多少條?
3、三角形的三條高,三條中線,三條角平分線各有什么特點(diǎn)?
4、三角形的內(nèi)角和是多少?n邊形的內(nèi)角和是多少?
你能用三角形的內(nèi)角和說明n邊形的內(nèi)角和嗎?
5、三角形的外角和是多少?n邊形的外角和是多少?
你能說明為什么多邊形的外角和與邊數(shù)無關(guān)嗎?
6、怎樣才算是平面鑲嵌?平面鑲嵌的條件是什么?能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪些?
你能舉一個(gè)幾個(gè)多邊形進(jìn)行平面鑲嵌的例子嗎?
三、例題導(dǎo)引
例1 如圖,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分別是邊AC、AB上的高,BD、CE相交于點(diǎn)H,求∠BHC的度數(shù)。 例2 如圖,把△ABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),
探索∠A與∠1+∠2有什么數(shù)量關(guān)系?并說明理由。
例3 如圖所示,在△ABC中,△ABC的內(nèi)角平分線與外角平分線交于點(diǎn)P,試說明∠P=1/2∠A.
四、鞏固練習(xí)
課本28—29頁復(fù)習(xí)題7(第3題可不做).
五、教后記
第十二章 全等三角形
單元要點(diǎn)分析
教學(xué)內(nèi)容
本章的主要內(nèi)容是全等三角形。主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的方法,并學(xué)會(huì)怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個(gè)小節(jié),第一節(jié)學(xué)習(xí)三角形全等的概念、性質(zhì);第二節(jié)學(xué)習(xí)三角形全等的判定方法和直角三角形全等的特殊判定方法;第三節(jié)利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明。
教材分析
教材力求創(chuàng)設(shè)現(xiàn)實(shí)、有趣的問題情境,使學(xué)生經(jīng)歷從現(xiàn)實(shí)活動(dòng)中抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容解決實(shí)際問題的過程。在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點(diǎn)放在第一個(gè)條件上,通過“邊邊邊”條件探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣正確地表達(dá)證明過程。學(xué)生開始學(xué)習(xí)三角形判定定理時(shí)的困難在于定理的證明,而這些推理證明并不要求學(xué)生掌握。為了突出判定方法這條主渠道,教材都作為基本事實(shí)提出來,在畫圖、實(shí)驗(yàn)中讓學(xué)生知道它們的正確性就可以了。在“角的平分線的性質(zhì)”一節(jié)中的兩個(gè)互逆定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,這將在“勾股定理”中介紹。
三維目標(biāo)
1.知識(shí)與技能
在探索全等三角形的性質(zhì)與判定中,提高認(rèn)知水平,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
2.過程與方法
經(jīng)歷探索三角形全等的判定的,發(fā)展空間觀念和有條理的表達(dá)能力,掌握兩個(gè)三角形全等的判定并應(yīng)用于實(shí)際之中。
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的觀察、操作、想象、推理能力,感悟幾何學(xué)的內(nèi)涵。
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式。
2.難點(diǎn):領(lǐng)會(huì)證明的分析思路,學(xué)會(huì)運(yùn)用綜合法證明的格式。
3.關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對(duì)定理的證明。
教學(xué)建議
1.注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過程。在教學(xué)中鼓勵(lì)學(xué)生觀察、操作、推理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì)。
2.注重創(chuàng)設(shè)具有現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用。
初二數(shù)學(xué)上冊(cè)教案 12
一、學(xué)生起點(diǎn)分析
《平面直角坐標(biāo)系》是八年級(jí)上冊(cè)第五章《位置與坐標(biāo)》第二節(jié)內(nèi)容。本章是“圖形與坐標(biāo)”的主體內(nèi)容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標(biāo)系”等內(nèi)容,而且也從坐標(biāo)的角度使學(xué)生進(jìn)一步體會(huì)圖形平移、軸對(duì)稱的數(shù)學(xué)內(nèi)涵,同時(shí)又是一次函數(shù)的重要基礎(chǔ)。《平面直角坐標(biāo)系》反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系和對(duì)人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。因此,教學(xué)過程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問題情境,會(huì)引起學(xué)生的極大關(guān)注,會(huì)有利于學(xué)生對(duì)內(nèi)容的較深層次的理解;另一方面,學(xué)生已經(jīng)具備了一定的學(xué)習(xí)能力,可多為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究。
二、教學(xué)任務(wù)分析
教學(xué)目標(biāo)設(shè)計(jì):
知識(shí)目標(biāo):
1、理解平面直角坐標(biāo)系以及橫軸、縱軸、原點(diǎn)、坐標(biāo)等概念;
2、認(rèn)識(shí)并能畫出平面直角坐標(biāo)系;
3、能在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。
能力目標(biāo):
1、通過畫坐標(biāo)系、由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識(shí)、合作交流意識(shí);
2、通過對(duì)一些點(diǎn)的坐標(biāo)進(jìn)行觀察,探索坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn),縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識(shí)和能力。
情感目標(biāo):
由平面直角坐標(biāo)系的有關(guān)內(nèi)容,以及由點(diǎn)找坐標(biāo),反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系和對(duì)人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的積極性和好奇心。
教學(xué)重點(diǎn):
1、理解平面直角坐標(biāo)系的有關(guān)知識(shí);
2、在給定的平面直角坐標(biāo)系中,會(huì)根據(jù)點(diǎn)的位置寫出它的坐標(biāo);
3、由觀察點(diǎn)的坐標(biāo)、縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,說明坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
教學(xué)難點(diǎn):
1、橫(或縱)坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系的探究;
2、坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)的總結(jié)。
三、教學(xué)過程設(shè)計(jì)
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課
同學(xué)們,你們喜歡旅游嗎?假如你到了某一個(gè)城市旅游,那么你應(yīng)怎樣確定旅游景點(diǎn)的位置呢?下面給出一張某市旅游景點(diǎn)的示意圖,根據(jù)示意圖(圖5— 6),回答以下問題:
(1)你是怎樣確定各個(gè)景點(diǎn)位置的?
(2)“大成殿”在“中心廣場(chǎng)”南、西各多少個(gè)格?“碑林”在“中心廣場(chǎng)”北、東各多少個(gè)格?
(3)如果以“中心廣場(chǎng)”為原點(diǎn)作兩條互相垂直的數(shù)軸,分別取向右、向上的?
學(xué)生自學(xué)課本,理解上述概念。
2、例題講解
(出示投影)例1
例1寫出圖中的多邊形ABCDEF各頂點(diǎn)的坐標(biāo)。
3.2平面直角坐標(biāo)系:課后練習(xí)
一、選擇題(共9小題,每小題3分,滿分27分)
1、若點(diǎn)A(﹣2,n)在x軸上,則點(diǎn)B(n﹣1,n+1)在()
A、第四象限B、第三象限C、第二象限D(zhuǎn)、第一象限
【考點(diǎn)】點(diǎn)的坐標(biāo)。
【專題】計(jì)算題。
【分析】由點(diǎn)在x軸的條件是縱坐標(biāo)為0,得出點(diǎn)A(﹣2,n)的n=0,再代入求出點(diǎn)B的坐標(biāo)及象限。
【解答】解:∵點(diǎn)A(﹣2,n)在x軸上,
∴n=0,
∴點(diǎn)B的坐標(biāo)為(﹣1,1)。
則點(diǎn)B(n﹣1,n+1)在第二象限。
故選C。
【點(diǎn)評(píng)】本題主要考查點(diǎn)的坐標(biāo)問題,解決本題的關(guān)鍵是掌握好四個(gè)象限的點(diǎn)的坐標(biāo)的特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù)。
2、已知點(diǎn)M到x軸的距離為3,到y(tǒng)軸的距離為2,且在第三象限。則M點(diǎn)的坐標(biāo)為()
A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)
【考點(diǎn)】點(diǎn)的坐標(biāo)。
【分析】根據(jù)到坐標(biāo)軸的距離判斷出橫坐標(biāo)與縱坐標(biāo)的長(zhǎng)度,再根據(jù)第三象限的點(diǎn)的坐標(biāo)特征解答。
【解答】解:∵點(diǎn)M到x軸的距離為3,
∴縱坐標(biāo)的長(zhǎng)度為3,
∵到y(tǒng)軸的距離為2,
∴橫坐標(biāo)的長(zhǎng)度為2,
∵點(diǎn)M在第三象限,
∴點(diǎn)M的坐標(biāo)為(﹣2,﹣3)。
故選D。
【點(diǎn)評(píng)】本題考查了點(diǎn)的坐標(biāo),難點(diǎn)在于到y(tǒng)軸的距離為橫坐標(biāo)的長(zhǎng)度,到x軸的距離為縱坐標(biāo)的長(zhǎng)度,這是同學(xué)們?nèi)菀谆煜鴮?dǎo)致出錯(cuò)的地方。
3.2平面直角坐標(biāo)系同步測(cè)試題
1.點(diǎn)A(3,—1)其中橫坐標(biāo)為XX,縱坐標(biāo)為XX。
2.過B點(diǎn)向x軸作垂線,垂足點(diǎn)坐標(biāo)為—2,向y軸作垂線,垂足點(diǎn)坐標(biāo)為5,則點(diǎn)B的坐標(biāo)為。
3.點(diǎn)P(—3,5)到x軸距離為XX,到y(tǒng)軸距離為XX。